Exact Recovery of Sparsely-Used Dictionaries

Daniel A. Spielman, Huan Wang, John Wright
Yale University
Columbia University

Daniel A. Spielman Yale University

John Wright
Columbia University

Sparse Approximation y A x

Sparse Assumption
signal Dictionary Coefficients

Sparse Approximation

Sparse Assumption

signal
Dictionary Coefficients

Dictionary

Dictionary Learning

Given a sample matrix Y (n-by-p), find $A(n-b y-n)$ and $X(n-b y-p)$, such that

$$
\text { 1. } Y=A X \quad \text { 2. } X \text { is sparse. }
$$

Both A and X are unknown.

Over-Complete Case

Given a sample matrix Y (m-by-p), and n, find A (m-by-n) and X (n-by-p), such that

$$
\text { 1. } Y=A X \quad \text { 2. } X \text { is sparse. }
$$

3. $m<n$

Difficulty

Difficulty

- Ambiguities:

Difficulty

- Ambiguities:
$(A, X) \quad$ or
$\left(А П \Lambda, \Lambda^{-1} \Pi^{T} X\right)$

Difficulty

- Ambiguities:
$(A, X) \quad$ or
$\left(А П \Lambda, \Lambda^{-1} \Pi^{T} X\right)$

Difficulty

- Ambiguities:
$(A, X) \quad$ or
$\left(А П \Lambda, \Lambda^{-1} \Pi^{T} X\right)$
- Non-Convexity: Bilinear Form

Previous Works:

Aharon, Elad, and Bruckstein: K-SVD

Mairal, Bach, Ponce, and Sapiro: Online Dictionary Learning

Geng, and Wright: Local Analysis
Vainsencher, Mannor and Bruckstein: Generalization Bound

A ladder to Global Optimum

- Model:
- A is non-singular, and square.
- X is Bernoulli-Gaussian.
- p is large $(p \sim n \log n)$

Bernoulli-Gaussian
Prob. NZ:
θ
NZ entry: $\quad N(0,1)$

The Algorithm

For $i=1$ to p

$$
\begin{aligned}
& w_{i}=\arg \min _{w}\left\|w^{T} Y\right\|_{1} \text { s.t. } \quad\left(Y e_{i}\right)^{T} w=1 \\
& x_{i}=w_{i}^{T} Y
\end{aligned}
$$

end

Advantages and Future Work

- Provable performance guarantee.
- Higher Accuracy
- Over-complete
- Noise

Results

Is the Answer Unique?

$$
\min _{A, X}\|X\|_{0}
$$

$$
\text { s.t. } \quad Y=A X
$$

- Unique up to scaling, and permutation when:
- $1 / n<\theta \leq 1 / 4$
- the sample \#: p>cnlogn
n : dimension

Performance Guarantee

$$
\min _{w}\left\|w^{T} Y\right\|_{1} \quad \text { s.t. } \quad r^{T} w=1
$$

- In each Iteration: use a column of Y as r.
- Correctly recover all rows of X when
- $\frac{2}{n} \leq \theta \leq \frac{\alpha}{\sqrt{n \log n}}$
- sample \# $p>c n^{2} \log ^{2} n$
n : dimension

Performance Guarantee

$$
\min _{w}\left\|w^{T} Y\right\|_{1} \quad \text { s.t. } \quad r^{T} w=1
$$

- In each Iteration: use a column of Y as r.

$$
r=Y(:, i)+Y(:, j)
$$

- Correctly recover all rows of X when
- $\frac{2}{n} \leq \theta \leq \frac{\alpha}{\sqrt{n \log n}}$
- sample \# $p>c n^{2} \log ^{2} n$
n : dimension

Performance Guarantee

$$
\min _{w}\left\|w^{T} Y\right\|_{1} \quad \text { s.t. } \quad r^{T} w=1
$$

- In each Iteration: use a column of Y as r.

$$
r=Y(:, i)+Y(:, j)
$$

- Correctly recover all rows of X when
- $\frac{2}{n} \leq \theta \leq \frac{\alpha}{\sqrt{n \log n}}$
- sample \# $p>c n^{2} \log ^{2} n$
$\frac{2}{n} \leq \theta \leq \frac{\alpha}{\sqrt{n}}$
n : dimension

Intuition of Proof

Intuition-Is the Answer

Unique?

$Y=A X=A^{\prime} X^{\prime}$

Intuition-Is the Answer

Unique?

$Y=A X=A^{\prime} X^{\prime}$

- when p is large, $\operatorname{rank}(Y)=\operatorname{rank}(X)=n$.

Intuition-Is the Answer

Unique?

$Y=A X=A^{\prime} X^{\prime}$

- when p is large, $\operatorname{rank}(Y)=\operatorname{rank}(X)=n$.
- A' has to be nonsingular.

Intuition-Is the Answer

Unique?

$$
Y=A X=A^{\prime} X^{\prime}
$$

- when p is large, $\operatorname{rank}(Y)=\operatorname{rank}(X)=n$.
- Á has to be nonsingular.
- $\operatorname{span}(Y)=\operatorname{span}(X)=\operatorname{span}\left(X^{\prime}\right)$

Intuition-Is the Answer

Unique?

$Y=A X=A^{\prime} X^{\prime}$

- when p is large, $\operatorname{rank}(Y)=\operatorname{rank}(X)=n . \quad \operatorname{Row}(Y)$
- A' has to be nonsingular.
- $\operatorname{span}(Y)=\operatorname{span}(X)=\operatorname{span}\left(X^{\prime}\right)$

Intuition-Is the Answer

Unique?
 $$
Y=A X=A^{\prime} X^{\prime}
$$

- when p is large, $\operatorname{rank}(Y)=\operatorname{rank}(X)=n . \quad \operatorname{Row}(Y)$
- A' has to be nonsingular.
- $\operatorname{span}(Y)=\operatorname{span}(X)=\operatorname{span}\left(X^{\prime}\right)$

Rows of X are the only sparse vectors in $\operatorname{span}(Y)$

Intuition

x	x	0	0	x	0	0	x	x
x	0	0	0	x	0	x		

II

Intuition

x	x	0	0	x	0	0	x	x
	x	0	0	0	x	0	x	

II

Rigorous when X is Bernoulli-Gaussian.

Intuition-Algorithm

Rows of X are the only sparse vectors in $\operatorname{span}(Y)$

Intuition-Algorithm

Rows of X are the only sparse vectors in $\operatorname{span}(Y)$
Seek sparse vectors in span(Y)

Intuition-Algorithm

Rows of X are the only sparse vectors in $\operatorname{span}(Y)$
Seek sparse vectors in span(Y)
$\min _{w}\left\|w^{T} Y\right\|_{0}$

Intuition-Algorithm

Rows of X are the only sparse vectors in $\operatorname{span}(Y)$
Seek sparse vectors in span(Y)

$$
\min _{w}\left\|w^{T} Y\right\|_{0} \quad \text { s.t. } \quad w \neq 0
$$

Intuition-Algorithm

Rows of X are the only sparse vectors in $\operatorname{span}(Y)$
Seek sparse vectors in span(Y)

$$
\min _{w}\left\|w^{T} Y\right\|_{0} \quad \text { s.t. } \quad w \neq 0
$$

Not Convex!

Intuition-Algorithm

Rows of X are the only sparse vectors in $\operatorname{span}(Y)$
Seek sparse vectors in span(Y)
$\min _{w}\left\|w^{T} Y\right\|_{0} \quad$ s.t. $\quad w \neq 0$
$\min _{w}\left\|w^{T} Y\right\|_{1}$

Intuition-Algorithm

Rows of X are the only sparse vectors in $\operatorname{span}(Y)$
Seek sparse vectors in span(Y)
$\min _{w}\left\|w^{T} Y\right\|_{0} \quad$ s.t. $\quad w \neq 0$
$\min _{w}\left\|w^{T} Y\right\|_{1} \quad$ s.t. $\quad r^{T} w=1$

Intuition-Algorithm

Rows of X are the only sparse vectors in $\operatorname{span}(Y)$
Seek sparse vectors in span(Y)

Linear Programming

How to Choose r?

$\min _{w}\left\|w^{T} Y\right\|_{1}$ s.t. $\quad r^{T} w=1$

How to Choose r?

$$
\min _{w}\left\|w^{T} Y\right\|_{1} \text { s.t. } \quad r^{T} w=1
$$

Since $Y=A X$, let $v=A^{T} w$

$$
\min _{v}\left\|\mathbf{v}^{T} X\right\|_{1} \quad \text { s.t. } \quad b^{T} v=1
$$

where $\quad b=A^{-1} r$

How to Choose r?

$$
\min _{w}\left\|w^{T} Y\right\|_{1} \text { s.t. } \quad r^{T} w=1
$$

Since $Y=A X$, let $v=A^{T} w<$ only for analysis

$$
\min _{v}\left\|\mathbf{v}^{T} X\right\|_{1} \quad \text { s.t. } \quad b^{T} v=1
$$

where $\quad b=A^{-1} r$

How to Choose b?

$\min _{v}\left\|\mathbf{v}^{T} X\right\|_{1} \quad$ s.t. $\quad b^{T} v=1$

If b is an all-one vector?

How to Choose b?

$$
\min _{v}\left\|\mathbf{v}^{T} X\right\|_{1} \quad \text { s.t. } \quad b^{T} v=1
$$

If b is an all-one vector?

Symmetric, no preference which row to pick up

How to Choose b?

$$
\min _{v}\left\|\mathbf{v}^{T} X\right\|_{1} \quad \text { s.t. } \quad b^{T} v=1
$$

If b is an all-one vector?

Symmetric, no preference which row to pick up

Combination of Rows

How to Choose b?

$\min _{v}\left\|\mathbf{v}^{T} X\right\|_{1} \quad$ s.t. $\quad b^{T} v=1$

How to Choose b?

$$
\min _{v}\left\|\mathbf{v}^{T} X\right\|_{1} \quad \text { s.t. } \quad b^{T} v=1
$$

If b is e_{1} ?

1	0	0	0	0

How to Choose b?

$\min _{v}\left\|\mathbf{v}^{T} X\right\|_{1} \quad$ s.t. $\quad b^{T} v=1$

If b is e_{1} ?

We will get the first row of X !

How to Choose b?

$$
\begin{array}{cl}
\min _{v}\left\|\mathbf{v}^{T} X\right\|_{1} \text { s.t. } & b^{T} v=1 \\
\text { If } b \text { is } e_{1} ? & 1 \\
\hline & 0 \\
\hline
\end{array}
$$

We will get the first row of X !

Unbalanced b is used to break the symmetry.

How to Choose b?

$$
\left\|\left(v_{1}+v_{2:}\right)^{T} X\right\|_{1} \geq\left\|v_{1}^{T} X\right\|_{1}
$$

How to Choose b?

$$
\left\|\left(v_{1}+v_{2:}\right)^{T} X\right\|_{1} \geq\left\|v_{1}^{T} X\right\|_{1}+(|T|-|S|) E\left(\left|v_{2:}^{T} X(:, 1)\right|\right)
$$

How to Choose b?

$\left\|\left(v_{1}+v_{2:}\right)^{T} X\right\|_{1} \geq\left\|v_{1}^{T} X\right\|_{1}+(|T|-|S|) E\left(\left|v_{2:}^{T} X(:, 1)\right|\right)$
x

How to Choose b?

$$
\left\|\left(v_{1}+v_{2:}\right)^{T} X\right\|_{1} \geq\left\|v_{1}^{T} X\right\|_{1}+(|T|-|S|) E\left(\left|v_{2:}^{T} X(:, 1)\right|\right)
$$

As long as $|T|>|S|$
v_{1} is the solution.

How to Choose b?

$$
\min _{v}\left\|\mathbf{v}^{T} X\right\|_{1} \quad \text { s.t. } \quad b^{T} v=1
$$

Suppose $j=\arg \max _{i}|b(i)|$
We will get the jth row of X if there is a large gap between $|b(j)|$ and the rest.

$$
\hat{v}=\left[0,0, \ldots, 1 / b_{j}, 0, \ldots, 0\right]^{T}
$$

How to Choose b?

We prefer a sparse b. If $r=Y e_{i}$

$$
\begin{array}{lll}
\min _{v}\left\|\mathbf{v}^{T} X\right\|_{1} & \text { s.t. } & b^{T} v=1 \\
\min _{w}\left\|w^{T} Y\right\|_{1} & \text { s.t. } & r^{T} w=1
\end{array}
$$

$$
b=A^{-1} r=A^{-1} Y e_{i}=A^{-1} A X e_{i}=X(:, i)
$$

Two-Step Argument

$$
\min _{v}\left\|\mathbf{v}^{T} X\right\|_{1} \quad \text { s.t. } \quad b^{T} v=1
$$

1. v supports only on the non-zero entries of b.

Two-Step Argument

$$
\min _{v}\left\|\mathbf{v}^{T} X\right\|_{1} \quad \text { s.t. } \quad b^{T} v=1
$$

1. v supports only on the non-zero entries of b.

Two-Step Argument

$$
\min _{v}\left\|\mathbf{v}^{T} X\right\|_{1} \quad \text { s.t. } \quad b^{T} v=1
$$

2. v has 1 nonzero.
b

1.25	0	0	0	-0.3

\hat{v}

Two-Step Argument

 $\min _{v}\left\|\mathbf{v}^{T} X\right\|_{1} \quad$ s.t. $\quad b^{T} v=1$2. v has 1 nonzero.

Two-Step Argument

 $\min _{v}\left\|\mathbf{v}^{T} X\right\|_{1} \quad$ s.t. $\quad b^{T} v=1$
X

Two-Step Argument

$$
\min _{v}\left\|\mathbf{v}^{T} X\right\|_{1} \quad \text { s.t. } \quad b^{T} v=1
$$

X

Two-Step Argument

$$
\min _{v}\left\|\mathbf{v}^{T} X\right\|_{1} \quad \text { s.t. } \quad b^{T} v=1
$$

X

Two-Step Argument

$$
\min _{v}\left\|\mathbf{v}^{T} X\right\|_{1} \quad \text { s.t. } \quad b^{T} v=1
$$

\hat{v}
X

$*$	0	0	0	$*$

\checkmark

Two-Step Argument

$$
\min _{v}\left\|\mathbf{v}^{T} X\right\|_{1} \quad \text { s.t. } \quad b^{T} v=1
$$

\hat{v}
X

	0	0	0	$*$

ζ

X	X			X			
		X				X	

Two-Step Argument

 $\min _{v}\left\|\mathbf{v}^{T} X\right\|_{1} \quad$ s.t. $\quad b^{T} v=1$$$
\hat{v} \quad X
$$

$*$	0	0	0	$*$

\square

X		X				X	

Two-Step Argument

 $\min _{v}\left\|\mathbf{v}^{T} X\right\|_{1} \quad$ s.t. $\quad b^{T} v=1$$$
\hat{v} \quad X
$$

$$
\begin{array}{|l|l|l|l|l|}
\hline * & 0 & 0 & 0 & * \\
\hline
\end{array}
$$

ζ

X		X			X		
		X				X	

Two-Step Argument

$\min _{v}\left\|\mathbf{v}^{T} X\right\|_{1}$
s.t.
$b^{T} v=1$

Expected \# of nonzeros per column:
$(\theta n) \theta \leq\left(\frac{c}{\sqrt{n \log n}}\right)^{2} n=\frac{c^{2}}{\log n}<1$

Zero Columns+Unique Columns

Recovery of all rows

- Recover all rows of X, when p is large.
- Rows of X are the only sparse vectors in span(Y).
- Greedy algorithm

The Algorithm

Initialize:
 $X(1,:)=\arg \min _{x_{i}}\left\|x_{i}\right\|_{0}$

For $\mathrm{i}=2: \mathrm{n}$

$$
X(i,:)=\arg \min _{x_{i}}\left\|x_{i}\right\|_{0} \quad \text { s.t. } \quad x_{i} \notin \operatorname{span}(X)
$$

end

The Algorithm

For $i=1$ to n
For $j=1$ to p

$$
\begin{aligned}
& r=P_{W^{c}} Y e_{j} \\
& w_{i}=\arg \min _{w}\left\|w^{T} Y\right\|_{1} \text { s.t. } r^{T} w=1
\end{aligned}
$$

end
$W(:, i)=\arg \min _{w_{i}}\left\|w_{i}^{T} Y\right\|_{0}$
$X(i,:)=W(:, i)^{T} Y$
end

Simulations

Measure: error $=\frac{\min _{\Pi, \Lambda}\|\hat{A} \Lambda \Pi-A\|_{F}}{\|A\|_{F}}$
$k=\# n n z$ per column
$k=1: 10$
10 trials for each configuration
$n=10: 10: 60$
$p=5 n \log n$

Simulations

 SPUD(greedy)

SPUD(proj)
SIV

0.01
0.02
0.05
0.1
0.25

KSVD
Online Learning Rel. Newton

Thank you!

