Exact Recovery of Sparsely-Used Dictionaries

Daniel A. Spielman, Huan Wang, John Wright

Yale University Columbia University

Daniel A. Spielman Yale University

John Wright Columbia University

Sparse Approximation

Dictionary

Wednesday, June 27, 2012

Data

Dictionary Learning

Given a sample matrix Y (n-by-p), find A (n-by-n) and X(n-by-p), such that

1. Y = AX 2. X is sparse.

Both A and X are unknown.

Over-Complete Case

Given a sample matrix Y (m-by-p), and n, find A (m-by-n) and X (n-by-p), such that

1. Y = AX

2. X is sparse.

3. m<n

Ambiguities:

• Ambiguities: (A, X) or $(A\Pi\Lambda, \Lambda^{-1}\Pi^T X)$

• Ambiguities: (A, X) or $(A\Pi\Lambda, \Lambda^{-1}\Pi^T X)$

• Ambiguities: (A, X) or $(A\Pi\Lambda, \Lambda^{-1}\Pi^T X)$

Son-Convexity: Bilinear Form

Previous Works:

Aharon, Elad, and Bruckstein: K-SVD

Mairal, Bach, Ponce, and Sapiro: Online Dictionary Learning

Geng, and Wright: Local Analysis

Vainsencher, Mannor and Bruckstein: Generalization Bound

A ladder to Global Optimum

Model:

A is non-singular, and square.
X is Bernoulli-Gaussian.
p is large ($p \sim n \log n$)
Bernoulli-Gaussian Prob. NZ: θ NZ entry: N(0,1)

The Algorithm

For i=1 to p

$$w_i = \operatorname{arg\,min}_{w} || w^T Y ||_1 \text{ s.t. } (Ye_i)^T w = 1$$

 $x_i = w_i^T Y$

end

Advantages and Future Work

Provable performance guarantee.

Higher Accuracy

Over-completeNoise

Results

Is the Answer Unique?

 $\min_{A,X} \|X\|_0$
s.t. Y = AX

Unique up to scaling, and permutation when: 1/n < θ ≤ 1/4 the sample #: p>cnlogn n: dimension

Performance Guarantee $\min_{w} \| w^T Y \|_1$ s.t. $r^T w = 1$

In each Iteration: use a column of Y as r.

Correctly recover all rows of X when

$$\frac{2}{n} \le \theta \le \frac{\alpha}{\sqrt{n \log n}}$$
 Sample # p > cn² log² n

n: dimension

PerformanceGuarantee $min_w \| w^T Y \|_1$ s.t. $r^T w = 1$

r=Y(:,i)+Y(:,j)

In each Iteration: use a column of χ as r.

Correctly recover all rows of X when

$$\frac{2}{n} \le \theta \le \frac{\alpha}{\sqrt{n \log n}}$$
 sample # $p > cn^2 \log^2 n$

n: dimension

PerformanceGuarantee $min_w \| w^T Y \|_1$ s.t. $r^T w = 1$

 \oslash In each Iteration: use a column of Υ as r.

r=Y(:,i)+Y(:,j)

Correctly recover all rows of X when

n: dimension

Intuition of Proof

Y=AX=A'X'

Y=AX=A'X'

when p is large, rank(Y)=rank(X)=n.

Y=AX=A'X'

when p is large, rank(Y)=rank(X)=n.

A' has to be nonsingular.

Y=AX=A'X'

when p is large, rank(Y)=rank(X)=n.

A' has to be nonsingular.

span(Y)=span(X)=span(X')

Row(Y)

m=n

Y=AX=A'X'

when p is large, rank(Y)=rank(X)=n.

A' has to be nonsingular.

span(Y)=span(X)=span(X')

Y=AX=A'X'

when p is large, rank(Y)=rank(X)=n.

A' has to be nonsingular.

span(Y)=span(X)=span(X')

Rows of X are the only sparse vectors in span(Y)

Row(Y)

m=n

Intuition

x 0 x 0 x x x

Intuition

Rigorous when X is Bernoulli-Gaussian.

Rows of X are the only sparse vectors in span(Y)

Rows of X are the only sparse vectors in span(Y) Seek sparse vectors in span(Y)

Rows of X are the only sparse vectors in span(Y) Seek sparse vectors in span(Y) $\min_{w} || w^{T} Y ||_{0}$

Rows of X are the only sparse vectors in span(Y) Seek sparse vectors in span(Y) $\min_{w} || w^{T} Y ||_{0}$ s.t. $w \neq 0$

Rows of X are the only sparse vectors in span(Y) Seek sparse vectors in span(Y) $\min_{w} \| w^{T} Y \|_{0}$ s.t. $w \neq 0$ <u>Not Convex!</u>

Rows of X are the only sparse vectors in span(Y) Seek sparse vectors in span(Y) $\min_{w} \| w^T Y \|_0 \quad \text{s.t.} \quad w \neq 0$

Rows of X are the only sparse vectors in span(Y) Seek sparse vectors in span(Y) $\min_{w} \| w^T Y \|_0 \quad \text{s.t.} \quad w \neq 0$ $\lim_{w \to T} W = 1$ Not Convex! $\int_{W} W^{T} Y = 1$ $\lim_{w \to T} W = 1$

Rows of X are the only sparse vectors in span(Y) Seek sparse vectors in span(Y) $\min_{w} \| w^T Y \|_0 \quad \text{s.t.} \quad w \neq 0$ $\begin{array}{c}
 \quad W \\
 \quad W \\$ Linear Programming

$\min_{w} \| w^{T} Y \|_{1} \quad \text{s.t.} \quad \mathbf{\Gamma}^{T} w = 1$

 $\min_{w} \| w^T Y \|_1 \quad \text{s.t.} \quad \mathbf{r}^T w = 1$

Since Y=AX, let $v = A^T w$

 $\min_{v} \| \mathbf{v}^{T} X \|_{1}$ s.t. $b^{T} v = 1$

where $b = A^{-1}r$

 $\min_{w} \| w^{T} Y \|_{1}$ s.t. $\Gamma^{T} w = 1$

Since Y=AX, let $v = A^T w$ < only for analysis

 $\min_{v} \| \mathbf{v}^{T} X \|_{1}$ s.t. $b^{T} v = 1$

where $b = A^{-1}r$

 $\min_{v} \| \mathbf{v}^{T} X \|_{1}$ s.t. $b^{T} v = 1$

If b is an all-one vector?

 $\min_{v} \| \mathbf{v}^T X \|_1 \quad \text{s.t.} \quad b^T v = 1$

If b is an all-one vector?

Symmetric, no preference which row to pick up

 $\min_{v} \| \mathbf{v}^{T} X \|_{1}$ s.t. $b^{T} v = 1$

If b is an all-one vector?

Symmetric, no preference which row to pick up

Combination of Rows

How to Choose b? $\min_{v} \| \mathbf{v}^T X \|_1$ s.t. $b^T v = 1$ If b is e_1 ? 1 0 0 0

How to Choose b? $\min_{v} \| \mathbf{v}^T X \|_1$ s.t. $b^T v = 1$ If b is e_1 ? 1 0 0 0

We will get the first row of X!

How to Choose b? $\min_{v} \| v^T X \|_1$ s.t. $b^T v = 1$ If b is e_1 ? 1 0 0 0

We will get the first row of X!

Unbalanced b is used to break the symmetry.

$\| (v_1 + v_2)^T X \|_1 \ge \| v_1^T X \|_1$

$\| (v_1 + v_{2:})^T X \|_1 \ge \| v_1^T X \|_1 + (|T| - |S|)E(|v_{2:}^T X(:,1)|)$

$\| (v_1 + v_{2:})^T X \|_1 \ge \| v_1^T X \|_1 + (|T| - |S|)E(|v_{2:}^T X(:,1)|)$

S

Т

$\| (v_1 + v_{2:})^T X \|_1 \ge \| v_1^T X \|_1 + (|T| - |S|)E(|v_{2:}^T X(:,1)|)$

As long as |T|>|S|

v_1 is the solution.

X

S

 $\min_{v} \| \mathbf{v}^{T} X \|_{1}$ s.t. $b^{T} v = 1$

Suppose $j = \arg \max_i |b(i)|$

We will get the jth row of X if there is a large gap between |b(j)| and the rest.

 $\hat{v} = [0, 0, \dots, 1/b_i, 0, \dots, 0]^T$

We prefer a sparse b. If $r = Ye_i$ $\min_{v} \| \mathbf{v}^T X \|_1$ s.t. $b^T v = 1$ $\min_{w} \| w^T Y \|_1$ s.t. $\mathbf{r}^T w = 1$

 $b = A^{-1}r = A^{-1}Ye_i = A^{-1}AXe_i = X(:,i)$

Two-Step Argument $\min_{v} \| \mathbf{v}^T X \|_1$ s.t. $b^T v = 1$

1. v supports only on the non-zero entries of b.

b 1.25 0 0 0 -0.3 V * * * * *

Two-Step Argument $\min_{v} \| \mathbf{v}^{T} X \|_{1} \quad \text{s.t.} \quad b^{T} v = 1$

1. v supports only on the non-zero entries of b.

Two-Step Argument $\min_{v} \| \mathbf{v}^T X \|_1$ s.t. $b^T v = 1$

2. v has 1 nonzero.

1.25	0	0	0	-0.3
ŵ				
*	0	0	0	*

Two-Step Argument $\min_{v} \| \mathbf{v}^T X \|_1$ s.t. $b^T v = 1$

2. v has 1 nonzero.

Two-Step Argument $b^T v = 1$ $\min_{v} \| \mathbf{V}^{T} X \|_{1} \quad \text{s.t.}$ X \hat{v} X X O X 0 0 * * X X

Two-Step Argument $b^T v = 1$ $\min_{v} \| \mathbf{V}^{T} X \|_{1} \quad \text{s.t.}$ X \hat{v} X X X 0 * 0 \mathbf{O} * X X

Two-Step Argument $b^T v = 1$ $\min_{v} \| \mathbf{V}^{T} X \|_{1} \quad \text{s.t.}$ X \hat{v} X X X 0 * \mathbf{O} \mathbf{O} * X X

Two-Step Argument $\min_{v} \| \mathbf{v}^T X \|_1$ s.t. $b^T v = 1$

Expected # of nonzeros per column:

$$(\theta n)\theta \le \left(\frac{c}{\sqrt{n\log n}}\right)^2 n = \frac{c^2}{\log n} < 1$$

Zero Columns+Unique Columns

Recovery of all rows

Recover all rows of X, when p is large.
Rows of X are the only sparse vectors in span(Y).

Greedy algorithm

The Algorithm

Initialize: $X(1,:) = \arg \min_{x_i} \|x_i\|_0$

For i=2:n

 $X(i,:) = \arg\min_{x_i} \| x_i \|_0 \quad \text{s.t.} \quad x_i \notin \operatorname{span}(X)$

The Algorithm

For i=1 to n For j=1 to p $r = P_{W^c} Y e_j$ $w_i = \arg \min_{w} || w^T Y ||_1$ s.t. $r^T w = 1$ end $W(:,i) = \arg\min_{w_i} \| w_i^T Y \|_0$ $X(i,:) = W(:,i)^T Y$

end

Simulations

k=#nnz per column
k=1:10 10 trials for each configuration
n=10:10:60
p=5nlogn

Simulations

Thank you!