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Dictionary Learning
Given a sample matrix Y (n-by-p), find A (n-by-n) 

and X(n-by-p), such that

1. Y＝AX 2. X is sparse.

Both A and X are unknown.
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Over-Complete Case
Given a sample matrix Y (m-by-p), and n, find A 

(m-by-n) and X (n-by-p), such that

1. Y＝AX 2. X is sparse.

3. m<n
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Y A X
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Difficulty

Ambiguities: (A,X) or (AΠΛ,Λ−1ΠT X)

Non-Convexity:   Bilinear Form

Y A X

=
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Previous Works:

Aharon, Elad, and Bruckstein: K-SVD

Mairal, Bach, Ponce, and Sapiro: Online Dictionary Learning

Vainsencher, Mannor and Bruckstein: Generalization Bound

Geng, and Wright: Local Analysis
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A ladder to Global Optimum

Model:

A is non-singular, and square.

X is Bernoulli-Gaussian.

p is large (             )p ~ n logn

Bernoulli-Gaussian Prob. NZ: θ
NZ entry: N(0,1)

Y A X

=
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The Algorithm

 wi = argminw‖wTY‖1 s.t. (Yei )
T w = 1

For i=1 to p

end

xi = wi
TY
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Advantages and Future Work

Provable performance 
guarantee.

Higher Accuracy

Over-complete

Noise
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Results
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Is the Answer Unique?

Unique up to scaling, and permutation when:

             

the sample #: p>cnlogn

1 / n < θ ≤ 1 / 4

min
A,X

‖X‖0

Y = AXs.t.

n: dimension
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Performance Guarantee

 minw‖w
TY‖1 s.t. rTw = 1

In each Iteration: use a column of Y as r.

Correctly recover all rows of X when

 

   sample # 

2
n
≤θ ≤

α
n logn

n: dimension

p > cn2 log2 n
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Performance Guarantee

 minw‖w
TY‖1 s.t. rTw = 1

In each Iteration: use a column of Y as r.

Correctly recover all rows of X when

 

   sample # 

2
n
≤θ ≤

α
n logn

r=Y(:,i)+Y(:,j)

2
n
≤θ ≤

α
n

n: dimension

p > cn2 log2 n
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Intuition of Proof
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Intuition-Is the Answer 
Unique?
Y=AX=A’X’
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Intuition-Is the Answer 
Unique?
Y=AX=A’X’

when p is large, rank(Y)=rank(X)=n.

Rows of X are the only sparse vectors in span(Y)

A’ has to be nonsingular.

span(Y)=span(X)=span(X’)

Row(Y)

m=n
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Intuition

00 x 0 xx 0
0 0 0 x xx 0

x0 x x xx 0

x x
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Intuition

00 x 0 xx 0
0 0 0 x xx 0

x0 x x xx 0

Rigorous when X is 
Bernoulli-Gaussian.

x x
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Intuition-Algorithm

Rows of X are the only sparse vectors in span(Y)
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Intuition-Algorithm

Rows of X are the only sparse vectors in span(Y)

Seek sparse vectors in span(Y)

 minw‖w
TY‖0 s.t. w ≠ 0

Not Convex!

 minw‖w
TY‖1
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Intuition-Algorithm

Rows of X are the only sparse vectors in span(Y)

Seek sparse vectors in span(Y)

 minw‖w
TY‖0 s.t. w ≠ 0

Not Convex!
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Intuition-Algorithm

Rows of X are the only sparse vectors in span(Y)

Seek sparse vectors in span(Y)

 minw‖w
TY‖0 s.t. w ≠ 0

Not Convex!

Linear Programming
 minw‖w

TY‖1 s.t.  rTw = 1
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How to Choose r?

 minw‖w
TY‖1 s.t.  rTw = 1
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How to Choose r?

 minw‖w
TY‖1 s.t.  rTw = 1

Since Y=AX, let v = ATw

 minv‖v
T X‖1 s.t. bTv = 1

where b = A−1r
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How to Choose r?

 minw‖w
TY‖1 s.t.  rTw = 1

Since Y=AX, let v = ATw

 minv‖v
T X‖1 s.t. bTv = 1

where b = A−1r

only for 
analysis

Wednesday, June 27, 2012



How to Choose b?

If b is an all-one vector?
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If b is an all-one vector?
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How to Choose b?

If b is an all-one vector?

Symmetric, no preference which row to pick up

 minv‖v
T X‖1 s.t. bTv = 1

Combination of Rows
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How to Choose b?

 minv‖v
T X‖1 s.t. bTv = 1

0
1 0

0
-1
11

0
1 / 2 1 / 2 X =

1
1

0
1 0

0
-1
11

0
1 0 X =

1
2
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How to Choose b?

If b is    ?e1

 minv‖v
T X‖1 s.t. bTv = 1

00 01 0
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How to Choose b?

If b is    ?

We will get the first row of X!

e1

Unbalanced b is used to break the symmetry.

 minv‖v
T X‖1 s.t. bTv = 1

00 01 0
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How to Choose b?

|| (v1 + v2:)
T X ||1≥|| v1

T X ||1
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How to Choose b?

0 *

X
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How to Choose b?

0 *

X

ST

|| (v1 + v2:)
T X ||1≥|| v1

T X ||1 +(|T | − | S |)E(| v2:
T X(:,1) |)

As long as |T|>|S|

v1 is the solution.
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How to Choose b?

Suppose j = argmaxi | b(i) |

We will get the jth row of X if there is a large 
gap between |b(j)| and the rest.

v̂ = [0,0,…,1 / bj ,0,…,0]
T

 minv‖v
T X‖1 s.t. bTv = 1
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How to Choose b?
We prefer a sparse b. If 

b = A−1r = A−1Yei = A
−1AXei = X(:,i)

r = Yei

 minw‖w
TY‖1 s.t.  rTw = 1

 minv‖v
T X‖1 s.t. bTv = 1
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Two-Step Argument

1. v supports only on the non-zero entries of b.

 minv‖v
T X‖1 s.t. bTv = 1

00 -0.31.25 0

** ** *

b

v
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1. v supports only on the non-zero entries of b.

 minv‖v
T X‖1 s.t. bTv = 1

00 -0.31.25 0

** ** *

b

v

00 -0.31.25 0

00 ** 0

b

v̂
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Two-Step Argument

 minv‖v
T X‖1 s.t. bTv = 1

2. v has 1 nonzero.

00 -0.31.25 0

00 ** 0

b

v̂

Wednesday, June 27, 2012



Two-Step Argument

 minv‖v
T X‖1 s.t. bTv = 1

2. v has 1 nonzero.

00 -0.31.25 0

00 ** 0

b

v̂
00 -0.31.25 0

00 00.8 0

b

v̂
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Two-Step Argument

 minv‖v
T X‖1 s.t. bTv = 1

00 0
v̂ X

X X X

X X

**
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Two-Step Argument

 minv‖v
T X‖1 s.t. bTv = 1

00 0
v̂ X

X X X

X X

X X X
X X* *

**
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Two-Step Argument

 minv‖v
T X‖1 s.t. bTv = 1

00 0
v̂ X

X X X

X X

X X X
X X* *

**
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Two-Step Argument

 minv‖v
T X‖1 s.t. bTv = 1

00 0
v̂ X

X X X

X X

X X X
X X* *

**
n}
θn}
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Two-Step Argument

Expected # of nonzeros per column:

(θn)θ ≤ ( c
n logn

)2n = c2

log n
< 1

Zero Columns+Unique Columns

 minv‖v
T X‖1 s.t. bTv = 1
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Recovery of all rows

Recover all rows of X, when p is large.

Rows of X are the only sparse vectors in 
span(Y).

Greedy algorithm
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The Algorithm

For i=2:n

X(i,:) = argminxi || xi ||0 s.t. xi ∉span(X)

end

Initialize: X(1,:) = argminxi || xi ||0
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The Algorithm

 wi = argminw‖wTY‖1 s.t. rTw = 1

For i=1 to n

end

W (:,i) = argminwi ||wi
TY ||0

r = P
WcYej

For j=1 to p

end

X(i,:) =W (:,i)T Y
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Simulations

Measure: error =
minΠ,Λ || ÂΛΠ− A ||F

|| A ||F

p=5nlogn

n=10:10:60

k=1:10 10 trials for each configuration

k=#nnz per column
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Simulations

Rel. NewtonOnline LearningKSVD

SIVSPUD(greedy) SPUD(proj)
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Thank you!
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