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Synchronized Submanifold Embedding for
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Abstract—Precise 3-D head pose estimation plays a significant
role in developing human-computer interfaces and practical face
recognition systems. This task is challenging due to the particular
appearance variations caused by pose changes for a certain sub-
ject. In this paper, the pose data space is considered as a union
of submanifolds which characterize different subjects, instead of
a single continuous manifold as conventionally regarded. A novel
manifold embedding algorithm dually supervised by both identity
and pose information, called snchronized submanifold embedding
(SSE), is proposed for person-independent precise 3-D pose estima-
tion, which means that the testing subject may not appear in the
model training stage. First, the submanifold of a certain subject is
approximated as a set of simplexes constructed using neighboring
samples. Then, these simplexized submanifolds from different sub-
jects are embedded by synchronizing the locally propagated poses
within the simplexes and at the same time maximizing the intrasub-
manifold variances. Finally, the pose of a new datum is estimated
as the propagated pose of the nearest point within the simplex con-
structed by its nearest neighbors in the dimensionality reduced fea-
ture space. The experiments on the 3-D pose estimation database,
CHIL data for CLEAR07 evaluation, and the extended application
for age estimation on FG-NET aging database, demonstrate the su-
periority of SSE over conventional regression algorithms as well as
unsupervised manifold learning algorithms.

Index Terms—Age estimation, manifold learning, simplex, sub-
space learning, 3-D pose estimation.

I. INTRODUCTION

A face image encodes a variety of useful information, such
as identity [29], emotion [25], and head pose [1], which

are significant for developing practical and humanoid computer
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vision systems. The problems of identity verification and emo-
tion recognition have been extensively studied as conventional
multiclass pattern recognition problems in the computer vision
literature. Many commercial systems have been developed for
human identity verification. However, the research on head pose
estimation, especially for precise 3-D head pose estimation, is
still far from mature due to the underlying difficulties and chal-
lenges. First, the database and ground truth are much more diffi-
cult to obtain than the identity and emotion information. Second,
the style of pose variation is personalized, and greatly depends
on the 3-D geometry of the human head. Finally, the pose labels
are of real values, and, hence, the pose estimation problem is
essentially a regression problem rather than a multiclass pattern
recognition problem.

Current research [5], [9], [16], [27] on appearance based head
pose estimation can be roughly divided into three categories.
The first category [15], [16] formulates pose estimation as a
conventional multiclass pattern recognition problem, and only
rough pose information is inferred from these algorithms. The
second category takes pose estimation as a regression problem,
and nonlinear regression algorithms, e.g., Neural Network [5],
are used for learning the mapping from the original appearance
features to the pose label. The last category assumes that the
pose data lie on or nearly on a low-dimensional manifold, and
manifold embedding techniques [6], [8], [9], [12], [18], [19] are
utilized for learning a more effective representation for pose es-
timation. In this work, we address the challenging problem of
person-independent precise 3-D head pose estimation, instead
of the rough discrete pose estimation in the pan direction as done
conventionally, and, hence, the algorithms like linear discrimi-
nant analysis [10] from the first category are inapplicable in our
scenario. To effectively exploit the underlying geometry struc-
ture information of the pose data space as well as the available
identity and pose information, our solution is pursued within
the third category, but many algorithms within this category,
e.g., [18], are not suitable for the task we concern in this paper
since they were proposed with the underlying assumption that
the testing subject appears in the model training set.

In this paper, we present a dually supervised manifold em-
bedding algorithm for person-independent precise 3-D head
pose estimation motivated from the following observations:
1) the pose sample data are often from multiple subjects, and
distributed on distinctive submanifolds of different subjects
instead of a single continuous manifold assumed by most
conventional manifold learning [4], [22], [26] algorithms, such
as ISOMAP [23], Locally Linear Embedding (LLE) [21], and
Laplacian Eigenmaps [3]; 2) these submanifolds commonly
share similar geometric shapes as shown in Fig. 1; and 3) a
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Fig. 1. Three-dimesional embedding of the pose data from three subjects. The
data are shown to lie on three distinctive submanifolds instead of a single con-
tinuous manifold.

desirable representation for 3-D head pose estimation should
be person-independent, namely the model trained on training
data has good generalization capability on data from unknown
subject.

Our proposed manifold embedding algorithm is dually super-
vised by both identity and pose information. More specifically
speaking, first, the submanifold of each subject is approximated
as a set of simplexes [17] constructed using neighboring sam-
ples, and the pose label is further propagated within all the sim-
plexes by using the generalized barycentric coordinates [17].
Then these submanifolds are synchronized by seeking the coun-
terpart point of each sample within the simplexes of a different
subject, and consequently the synchronized submanifold em-
bedding is formulated to minimize the distances between these
aligned point pairs and at the same time maximize the intra-
submanifold variance. Finally, for a new datum, a simplex is
constructed using its nearest neighbors measured in the dimen-
sionality reduced feature space, and then its pose is estimated as
the propagated pose of the nearest point within the simplex.

Here we highlight some aspects of our proposed algorithm,
referred to as Synchronized Submanifold Embedding (SSE), by
comparing with conventional manifold learning algorithms for
head pose estimation.

1) What are the advantages of SSE over unsupervised man-
ifold learning algorithms? In the past decade, unsuper-
vised manifold learning techniques have attracted much at-
tention for both theoretical research and practical applica-
tions. Among them, ISOMAP [23], LLE [21], and Lapla-
cian Eigenmaps [3] are the most popular ones. Most of
these algorithms are unsupervised, and, hence, the derived
low-dimensional representation is not guaranteed to be op-
timal for classification or regression problems. SSE suf-
ficiently utilizes both the pose label information and the
identity information to alleviate the difference of data from
different subjects yet with similar poses, and, hence, it has
the potential of yielding a more robust representation for
person-independent precise 3-D head pose estimation.

2) Why not to use conventional supervised manifold learning
algorithms? Manifold learning was previously explored in
a supervised manner [20] by considering the labeling in-
formation for computing the local distances or similarities.
That is, the distance computed on features is replaced by
the product or weighted sum of the distances computed on

features and on pose labels. However, for this type of su-
pervised algorithm, the local distance or similarity is often
dominated by the label information, and the derived repre-
sentation does not essentially reflect the original manifold
structure, and, hence, they are more like conventional gen-
eral supervised learning algorithms than manifold learning
algorithms. Moreover, conventional supervised manifold
learning algorithms, such as Supervised LLE [20], were
designed for multiclass classification problems and, hence,
inapplicable for precise 3-D head pose estimation. SSE in-
stead aligns the submanifolds with the propagated pose la-
bels and within each submanifold, the manifold informa-
tion is sufficiently retained. Hence, SSE is supervised and
also follows the essence of manifold learning. Finally, SSE
is dually supervised by both pose labels and identity in-
formation, while instead conventional supervised manifold
learning algorithms utilize only one type of information.

The rest of the paper is organized as follows. Section II in-
troduces the motivations from conventional manifold learning
algorithms, followed by the formulation of synchronized sub-
manifold embedding. Experimental results on precise 3-D head
pose estimation, and the extended application of age estimation,
are demonstrated in Section III. We conclude this paper in Sec-
tion IV.

II. SYNCHRONIZED SUBMANIFOLD EMBEDDING FOR

PERSON-INDEPENDENT POSE ESTIMATION

Here, we assume that the training sample data are given as
, where , , and

. is the number of training samples for the
th subject, is the number of subjects, and we have

samples in total. Correspondingly, the pose labels are
presented as , , where

, and three values of are the pan, tilt,
and yaw angles of the sample . For ease of presentation, we
denote the concatenated sample data as
and the concatenated label matrix as .

A. Motivations

Recent work [6], [9], [19] demonstrated the effectiveness
of manifold learning techniques for head pose estimation. The
high-dimensional pose data are assumed to lie on or nearly
on a low-dimensional continuous manifold, and the manifold
learning techniques such as LLE and Laplacian Eignmaps,
or their linear extensions [9], [12], are used for manifold
embedding. Then the Nearest Neighbor criterion [10] or other
simple linear regression approach is used for final head pose
estimation.

Though there were some attempts [20] to develop supervised
manifold learning algorithms for multiclass classification prob-
lems, most manifold learning algorithms run in an unsupervised
manner for regression problems like precise 3-D head pose es-
timation. Our work presented in this paper is motivated by the
observation that both identity and pose information are mostly
available in the model training stage and they are useful for de-
veloping effective person-independent precise head pose esti-
mation algorithm. More specifically speaking, it is commonly
believed [10] that for regression or classification problems, the
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label information can greatly improve algorithmic performance
compared with the unsupervised algorithms which utilize only
original feature information. Besides the pose label informa-
tion, the identity information is valuable for person-independent
head pose estimation. On the one hand, the pose data often come
from multiple subjects, and lie on separated distinctive subman-
ifolds; hence, the assumption that the data lie on a single contin-
uous manifold cannot be satisfied in this scenario. On the other
hand, the submanifolds of different subjects often share sim-
ilar geometric structures as shown in Fig. 1, and the algorithmic
person-independence and generalization capabilities can be fur-
ther promoted by synchronizing the pose labels on different sub-
manifolds.

To sufficiently utilize both the pose label information and the
identity information, we provide as follows a dually supervised
algorithm, called synchronized submanifold embedding, to seek
an effective representation for person-independent precise 3-D
head pose estimation.

B. Synchronized Submanifold Embedding

As shown in Fig. 1, the pose image data of a certain subject
constitute a continuous submanifold. To obtain a person-inde-
pendent representation for 3-D head pose estimation, it is nat-
ural to learn a low-dimensional subspace by synchronizing these
submanifolds, such that the samples from different subjects yet
with similar poses will be projected to similar low-dimensional
representations.

Before formally describing our solution to learn such a sub-
space, we review some terminologies on simplex [17] and gen-
eralized barycentric coordinates.

A -simplex is a -dimensional analogue of a triangle. Specif-
ically, a -simplex is the convex hull of a set of affinely
independent pointd1 in some Euclidean space of dimension
or higher. Mathematically speaking, denote the vertices as

, and then the -simplex is expressed as

(1)

The coordinates in are called the gener-
alized barycentric coordinates, which are the generalization of
barycentric coordinates. An illustration of simplexes is shown
in Fig. 2.

1) Submanifold Simplexization: As the head pose label can
be of any real value within [0 360), it is often difficult to obtain
images with exactly the same poses yet from different subjects.
Hence, the submanifolds cannot be directly aligned based on
these discrete training samples, and traditional supervised sub-
space learning algorithms like Linear Discriminant Analysis [2]
cannot be used for the task we concern in this paper.

In this work, we present an approach to transform the labeled
discrete samples on a submanifold into a set of continuous sim-
plexes with propagated pose labels. For each sample datum ,
the -nearest neighbors of the same subject measured by pose
label distance are used to construct a -simplex as

1In this work, the affinely independent property is assumed for the � nearest
neighbors of a datum, which is commonly satisfied since � is small in our ex-
periments.

Fig. 2. Illustration of simplexes: (a) 0-simplex, (b) 1-simplex, (c) 2-simplex,
and (d) 3-simplex.

(2)

where is the nearest neighbors of
sample within the same submanifold and .

Motivated by the work of LLE [21], we assume in this
work that the nonnegative linear reconstruction relationship
within the -simplex can be bidirectionally transformed
between features and pose labels. That is, for a point within

, denoted as , its pose label can
be propagated from the poses of vertices using the same corre-
sponding generalized barycentric coordinate vector as

(3)

Note that the bidirectional propagation of the generalized
barycentric coordinates between features and labels is assumed
only within a local neighborhood like the -simplex around
a certain sample, which is in accord with the general locally
linear assumption of a manifold [21].

In this way, beyond a set of discrete samples, each submani-
fold is expressed as a set of labeled continuous simplexes, and
then for each datum , it has the potential to find a counterpart
point with the same pose within the simplexes of any other sub-
ject. Consequently, these submanifolds of different subjects can
be synchronized by aligning these data pairs.

2) Submanifold Embedding by Pose Synchronization: As
described above, we aim to pursue a low-dimensional repre-
sentation such that the submanifolds of different subjects are
aligned according to the precise pose labels. For each sample

, the point within the reconstructed simplexes of the th
subject and with the most similar pose is calculated in
two steps. First, the generalized barycentric coordinates of this
point is computed as

(4)

then the corresponding datum and label are derived as

(5)
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Fig. 3. Illustration of submanifold synchronization by simplicization. Note that
to facilitate display, we utilize the 2-simplex for demonstration and the Euclidian
distance in the 2-D plane does not exactly reflect true distance between sample
pair. The blue points represent the training samples, and the red points repre-
sent the corresponding synthesized points in distinctive submanifolds with the
same poses. The dashed bidirectional lines connect the point pairs with the same
poses.

(6)

Remark: For a given , the task becomes a standard quadratic
optimization problem

(7)

which can be solved by general optimization tool, such as the
quadprog function in Matlab.

There are serval ways to derive a low-dimensional representa-
tion for synchronizing these submanifolds, and in this paper, we
utilize the linear projection approach, namely, the manifold em-
bedding is achieved by seeking a projection matrix
(usually ) and

(8)

where is the low-dimensional representation of sample
.
On the one hand, the projection matrix should minimize

the distances between each sample to its nearest neighbor (mea-
sured by pose label distance) within the simplexes of any other
subject. Namely, it should minimize

(9)
where the indicator function , if
; 0, otherwise. is a threshold to determine whether to synchro-

nize the point pairs, and in this work, is set as 2 for the pose
estimation problem and as 1 for age estimation in the extended
application.

On the other hand, to promote the separability of different
poses, it is desirable to maximize the distances between different
sample pairs, namely

(10)

To achieve these dual objectives, the projection matrix is
derived as

(11)

where

(12)

The objective function in the optimization problem (11)
is nonlinear and commonly there is no closed form solution.
Usually, it is transformed into another more attractive form as

and solved with the
generalized eigenvalue decomposition method as

(13)

where the vector is the eigenvector corresponding to the th
largest eigenvalue , and it constitutes the th column vector of
the projection matrix .

C. Pose Estimation by Local Simplex Propagation

After we obtain the projection matrix , the sample data
are all transformed into the low-dimensional feature space as
in (8), and then all the training samples are denoted as

.
For a new datum , first, we also transform it into the low-

dimensional feature space as . Then, we search for its
nearest point within the simplex constructed using its
nearest neighbors in the low-dimensional feature space, namely,
search for the generalized barycentric coordinate vector by
optimizing

(14)

where , , are the nearest samples of .
Then, the label of the new datum is predicted by propagating the
generalized barycentric coordinates to the labels of the vertices
of the constructed -simplex

(15)

III. EXPERIMENTS

In this section, we systematically evaluate the effectiveness
of our proposed algorithm, synchronized submanifold embed-
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ding (SSE), for person-independent precise 3-D head pose es-
timation. We use the latest precise 3-D head pose estimation
database, CHIL data, from the CLEAR07 evaluation [30] for
the experiments. To further demonstrate the generality of SSE
in person-independent estimation, we evaluate our algorithm
on the age estimation problem and the popular aging database
FG-NET [31]. For comparison, Principal Components Analysis
(PCA) [13], [24] and Locally Embedded Analysis (LEA) [9]
are implemented. As mentioned beforehand, conventional su-
pervised subspace learning algorithm LDA cannot be directly
applied for the 3-D pose estimation problem, and, hence, we did
not implement for comparison. The pose estimation from PCA
and LEA is also based on local simplex propagation as in SSE.
Also, the popular regression algorithms Neural Network (NN)
[5] and Quadratic Models (QM) [14] are implemented for com-
parison in both pose and age estimation.

A. Person-Independent Precise 3-D Head Pose Estimation

1) Data Set: CHIL Data for CLEAR07 Evaluation: The
CLEAR workshop [30] is an international effort to evaluate
systems that are designed to recognize events, activities, and
their relationships in interaction scenarios. In this work, we
use the latest pose database, CHIL data, in the CLEAR07
evaluation, and this database is intended for precise 3-D head
pose estimation.

In the CHIL data, observations from four cameras that are
placed in a room’s upper corners are obtained for each subject.
This data set includes 15 different persons standing in the middle
of the room, rotating their heads towards all possible directions
while wearing a magnetic motion sensor (Flock of Birds) in
order to obtain their ground truth head orientations. The task
is to estimate the head orientations with respect to the room’s
coordinate system, thus to obtain a joint estimate from all four
views to achieve a hypothesis more robust than estimating from
just one single camera. Some sample data are displayed in Fig. 4,
and the four images in each column are from the same subject
and captured by four cameras simultaneously. Precise 3-D pose
estimation in this scenario is very difficult due to the fact that
the images are in a very low resolution and also noisy.

In our experiments, we use the same experimental configura-
tion as designed by the evaluation committees. For training, ten
videos, including annotations of the head bounding boxes and
the original ground truth information about the true head pose,
are provided. For evaluation, five videos along with the head
bounding box annotations are provided. The ground truth infor-
mation is used for scoring. People appearing in the training set
do not appear in the evaluation set. Since manual annotations
of the head bounding box only occur at every fifth frame of the
videos, only hypotheses corresponding to these time stamps are
going to be scored [30]. Finally, the training set contains 5348
pose samples (each sample consists of four images captured by
four different cameras) from the 10 subjects, and the testing set
contains 2402 pose samples. Each image is cropped and scaled
to size 40-by-40, and then gray-level values of all the four im-
ages are concatenated as the feature vector for each pose sample.

Fig. 4. Cropped sample images in the CHIL data for CLEAR07 evaluation.
Note that each column contains four images of the same subject captured by the
four cameras.

For all the experiments, we conduct PCA and reduce the fea-
ture dimension to 300, and then all the other algorithms are per-
formed on the dimensionality reduced feature space. The Mean
Absolute Error (MAE) [14] is used for accuracy evaluation.

2) Embedding Visualization and Divergency: The algo-
rithms PCA, LEA, and SSE all provide a linear embedding
of the manifold/submanifold from the original feature space
to a low-dimensional feature space. As described before, the
person-independent property is critical for algorithmic general-
ization to unknown testing subjects.

In this subsection, we evaluate the person-independent char-
acteristic of the low-dimensional feature space derived from the
training set of CHIL data. The left plot in Fig. 5 displays the

distribution of samples from different subjects at different
poses in the derived feature space from SSE, and we can observe
that the samples of different subjects yet at similar poses gather
together in the feature space, which coincides with the target of
our SSE algorithm.

The right plot in Fig. 5 shows the divergency of the dimen-
sionality reduced samples around 10 poses compared between
PCA, LEA, and SSE. For computing the divergency, the feature
dimension is set as 3, and the divergency is defined as the stan-
dard deviation of the nine samples around certain pose, normal-
ized by the standard deviation of all the samples in the training
set. The results shows that the divergency based on the subman-
ifold embedding from SSE is much smaller than those based on
the manifold embeddings from PCA and LEA. The low diver-
gency ensures a good generalization capability of SSE on the
testing data.

3) Precise 3-D Head Pose Estimation Results: By following
the experimental configuration for the CLEAR07 evaluation, we
evaluated the performance of the algorithms PCA, LEA, QM,
NN, and SSE. We also implemented a supervised version of
LEA by extending the algorithm in [20], and the corresponding
algorithm is referred to as Supervised LEA (SLEA). The de-
tailed results are shown in Fig. 6 and Table I. From these re-
sults,2 we can have the following observations.

2Our reported results here are better than what we reported in [30], because
we further refined the algorithmic parameters. The NN results reported in [30]
are slightly better that what we reported here because they used extra features
besides image intensities.
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Fig. 5. Embedding visualization and divergency evaluation: (a) the 3-D distribution of the samples from different subjects and at different poses; and (b) the
divergency of samples around certain poses for the algorithms PCA, LEA, and SSE. Note that in plot (a), the shapes of the samples reflect different subjects and
the colors reflect difference poses, and only three subjects are shown for the ease of display; and the horizontal axes are the indexes of the ten randomly selected
poses in plot (b).

TABLE I
MEAN ABSOLUTE ERRORS OF THE ALGORITHMS PCA, LEA/SLEA, QM, NN, AND SSE ON THE CHIL DATA OF THE CLEAR07 EVALUATION. NOTE THAT

THE OPTIMAL PARAMETERS USED FOR DIFFERENT SUBJECTS ARE DIFFERENT, AND THE TOTAL AVERAGE IS NOT THE WEIGHTED AVERAGE OF THE RESULTS

FROM THE FIVE SUBJECTS

Fig. 6. Sum of total average MAEs for PCA, LEA, and SSE on different feature
dimensions for precise 3-D pose estimation on the CHIL data in the CLEAR07
evaluation. Note that the results of QM and NN are expressed as lines in the
figure, and MAE is the sum of the MAEs for three different directions.

1) SSE consistently achieves lower MAE than PCA, LEA,
QM, and NN for both individual subject evaluation and
overall evaluation.

2) NN and QM perform badly in this experiment, which
should come from the fact that the training subjects and

the testing subjects are different, and NN as well as QM
lack enough generalization capability, since they did not
explicitly pursue the person-independence.

3) The performance of LEA is better than that of PCA, which
validates the effectiveness of exploiting manifold structure
of the data space for pose estimation [9]. SLEA is generally
better than LEA.

B. Beyond: Person-Independent Age Estimation

Besides precise 3-D head pose estimation, our proposed algo-
rithm SSE can be used for any regression problems containing
images from different subjects. The general idea of SSE is to
employ the identity information for pursuing person-indepen-
dent representation. Here we take the age estimation problem
as an example to demonstrate its potential applications in other
domains.

1) Data Set: FG-NET Aging Database: The FG-NET aging
database [31] is used in our experiments. It contains 1002 face
images of 82 subjects with ages ranging from 0 to 69, and each
subject has multiple images of different ages as shown in Fig. 7.
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Fig. 7. Cropped samples from the FG-NET aging database. Note that all these
images are from the same subject yet of different ages.

Fig. 8. Mean Absolute Errors of PCA, LEA, and SSE on different feature di-
mensions for age estimation on the FG-NET aging database. Note that the results
of QM and NN are expressed as lines in the figure.

TABLE II
MEAN AVERAGE ERRORS OF THE ALGORITHMS PCA, NPE, QM, NN, AND SSE

ON THE FG-NET DATABASE WITH THE LEAVE-ONE-PERSON-OUT STRATEGY

The first 200 appearance parameters of Active Appearance
Models [7] are extracted based on the provided 68 key facial
points [14], and used as input features for age estimation.
For detailed information on shape, texture, and appearance
parameters, please refer to [7]. The Leave-One-Person-Out
(LOPO) strategy is used to evaluate the performance of differ-
ence algorithm, and the Mean Absolute Error is again used for
measuring accuracy as in the pose estimation experiments.

2) Age Estimation Results: Detailed experimental results are
shown in Fig. 8 and Table II. The experimental results again val-
idate the effectiveness of SSE over the PCA and LEA algorithms
in estimation accuracy. The QM and NN algorithms work well
in this experiments, and they perform better than both PCA and
LEA. Despite the nonlinear property of the QM and NN algo-
rithms, their performances are not as good as SSE which takes
into account both the age information and the subject identity
information, and promotes the generalization capability on the
testing data.

IV. DISCUSSIONS

In this paper, we presented a framework for precise 3-D head
pose estimation by seeking effective submanifold embedding
with the guidance of both pose and subject identity informa-
tion. First, the submanifolds of different subjects are simplex-
ized such that they can be synchronized according to the pose
labels propagated within the simplexes. Then, submanifold em-
bedding is derived by aligning the pose distribution within dif-
ferent submanifolds, and finally the pose label of a new datum is
predicted as the propagated pose of the nearest point within the
simplex constructed using its nearest neighbors in the derived
low-dimensional feature space. The effectiveness of the pro-
posed algorithm was validated by the experiments on the latest
3-D head pose estimation database, CHIL data for CLEAR07
evaluation, and its extended application for age estimation on
the popular FG-NET aging database. One future research direc-
tion on this work is to develop dually supervised manifold em-
bedding algorithms which can benefit both subject identification
and the estimation of pose or age information simultaneously;
and another direction is to extend this method for pose-inde-
pendent face recognition, which is a dual problem of person-in-
dependent pose estimation discussed in this paper. Also, there
often exists uncertainty/noise in the obtained pose label, so we
are planning to study the regression problem with uncertain la-
bels in our future work.
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