
698 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 3, NO. 4, DECEMBER 2008

Regression From Uncertain Labels and
Its Applications to Soft Biometrics

Shuicheng Yan, Member, IEEE, Huan Wang, Xiaoou Tang, Senior Member, IEEE,
Jianzhuang Liu, Senior Member, IEEE, and Thomas S. Huang

Abstract—In this paper, we investigate two soft-biometric prob-
lems: 1) age estimation and 2) pose estimation, within the scenario
where uncertainties exist for the available labels of the training
samples. These two tasks are generally formulated as the auto-
matic design of a regressor from training samples with uncertain
nonnegative labels. First, the nonnegative label is predicted as
the Frobenius norm of a matrix, which is bilinearly transformed
from the nonlinear mappings of a set of candidate kernels. Two
transformation matrices are then learned for deriving such a
matrix by solving two semidefinite programming (SDP) problems,
in which the uncertain label of each sample is expressed as two
inequality constraints. The objective function of SDP controls the
ranks of these two matrices and, consequently, automatically de-
termines the structure of the regressor. The whole framework for
the automatic design of a regressor from samples with uncertain
nonnegative labels has the following characteristics: 1) the SDP
formulation makes full use of the uncertain labels, instead of using
conventional fixed labels; 2) regression with the Frobenius norm
of matrix naturally guarantees the nonnegativity of the labels,
and greater prediction capability is achieved by integrating the
squares of the matrix elements, which to some extent act as weak
regressors; and 3) the regressor structure is automatically deter-
mined by the pursuit of simplicity, which potentially promotes
the algorithmic generalization capability. Extensive experiments
on two human age databases: 1) FG-NET and 2) Yamaha, and
the Pointing’04 head pose database, demonstrate encouraging
estimation accuracy improvements over conventional regression
algorithms without taking the uncertainties within the labels into
account.

Index Terms—Semidefinite programming, soft biometrics, un-
certain labels.

I. INTRODUCTION

H ARD BIOMETRICS, such as the face/human identifica-
tion from face, iris, fingerprint, and gait, have attracted

a lot of attention over the past decades. Many commercial sys-
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tems have been developed based on different biometric features.
Compared with the hard-biometric tasks, soft-biometric tasks,
such as age estimation and pose estimation which do not pre-
dict deterministic identity but output certain human character-
istics, were much less studied, and the current techniques for
these tasks are still far from real application. These two tasks,
especially the pose estimation, for the labels of the data can be
considered continuous quantities; hence, they are essentially re-
gression problems.

A face image encodes different types of useful information,
such as identity, expression, gender, age, and pose. It is com-
monly believed that humans can provide satisfying and consis-
tent ground truths about the identity, expression, and gender, by
clues from the speech, hair style, and costume. But for age and
pose, the ground truths labeled by different individuals are often
far from consistent due to the complex effects of living condi-
tions, cosmetics, personal specialties, gender differences, facial
geometry, and so on. Three examples of pose labeling from 13
different participants are shown in Fig. 1, and large variations
are observed among the labels from different participants [22].
The average standard deviation for all of the evaluated images
is 5.73 as reported in [22].

Despite the fact that age is an important characteristic in hu-
mans, only a few works have been dedicated to the problem of
age estimation [10], [11]. The latest work is from Geng et al. [7],
based on the statistical modeling of aging patterns. All of these
algorithms require the age label to be a fixed value. However,
it is often difficult to acquire the accurate ages in real applica-
tions; instead, only rough age ranges are often obtained. More-
over, even if the age of a certain person is labeled as a fixed
value, such as 30, the actual age can be any real value within the
interval . Hence, it makes more sense for the age to be
finally expressed as an interval instead of a fixed value.

Head pose estimation has many useful applications, such
as gaze detection, safe driving, automouse in a large screen,
etc. Much research [6], [19] has been dedicated to this specific
problem, and the latest work was proposed by Nallure et al.
[16], based on biased manifold learning. All of these algorithms
cannot directly handle the scenario with uncertain labels. Al-
though the pose labels can be obtained from hardware devices
in certain experimental scenarios, it is still desirable and of
great application importance to propose a new formulation for
the automatic design of a regressor based on training samples
with uncertain labels.

A natural question is whether we can gain more from the in-
terval labels by designing a new learning framework. Our an-
swer to this question is positive. In this paper, the estimation
of age or pose information is considered as a nonlinear regres-
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TABLE I
A SUMMARY OF THE DATABASE SIZE, AGE PRECISION, AND MAIN FEATURES USED FOR DIFFERENT AGE ESTIMATION ALGORITHMS.

Fig. 1. Estimated pose labels of the three images in [8] from 13 different ob-
servers by rotating a 3-D head model. We can see that large standard deviations
exist for these labeled ground truths [22].

sion problem based on training samples with uncertain nonnega-
tive labels. The nonlinearity from the input image features to the
label is embodied with the kernel trick [15], and a set of kernels
is used for designing a regressor. The age and pose values can be
considered nonnegative and with a lower bound of zero, and we
compute the age as the Frobenius norm of a dimension-flexible
matrix. Its advantage over direct linear combination of features
or kernels for regression is that it provides a flexible way to inte-
grate a set of weak regressors, namely the square outputs of the
matrix elements, for a better approximation. This flexible ma-
trix is bilinearly transformed from the mappings of the candidate
kernels. The learning of these two transformation matrices is
formulated as a semidefinite programming (SDP) problem [3].
More specifically speaking, the uncertain label, namely the age
or pose interval, of each sample is expressed as two inequality
constraints in the SDP formulation, and its objectives function
is used to pursue a regressor with a simple structure, which po-
tentially promotes the algorithmic generalization capability.

The rest of this paper is organized as follows. We present
the backgrounds and motivations of this work in Section II.
Section III introduces the details of the SDP formulation for
automatic designing of a regressor based on training samples
with uncertain nonnegative labels. Its relationship with other
SDP problems as well as traditional regression algorithms is
discussed in Section IV. Section V provides comparison exper-
iments on two human age databases and one pose database, and
the concluding remarks are given in Section VI.

II. BACKGROUNDS AND MOTIVATIONS

In this section, we discuss the backgrounds of age estimation
and pose estimation, and also the motivations for our work of
learning autostructured regressors from uncertain nonnegative
labels.

A. Background and Motivation From Age Estimation

Kwon and Lobo [10] presented a method for age classifi-
cation based on the craniofacial development theory and skin
wrinkle analysis, with human faces finally classified into three
groups: 1) babies, 2) young adults, and 3) senior adults. Hayashi
et al. [9] proposed classifying age and gender based on the
wrinkle and geometry relationships between different parts of
a face, with the human ages divided into multiple groups at
the five-year intervals. Lanitis et al. [11] utilized active appear-
ance models [4] to extract the combined shape and intensity pa-
rameters, and then compared the age estimation accuracies of
the algorithms, including simple quadratic fitting, shortest dis-
tance classifier, and the neural network. Recently, Geng et al. [7]
proposed to conduct age estimation by modeling the statistical
properties of aging patterns, namely, a sequence of personal fa-
cial age images, based on the assumption that multiple images
of different ages are available for each person. Besides the age
estimation problem, many other problems related to human age
were also studied in the computer vision literature. Lanitis et al.
[12] and Ramanathan and Chellappa [18] studied the problem
of aging simulation on faces. Ramanathan and Chellappa [17]
proposed a Bayesian age-difference classifier built on a prob-
abilistic eigenspace framework, and face verification was con-
ducted in an age-invariant manner.

Research on age estimation is still at a preliminary stage, and
most works are based on small databases with coarse age pre-
cision. A detailed comparison of the previous algorithms along
with our solution is summarized in Table I. It shows that the
largest database ever used consists of 1 002 face images from
only 82 subjects, which is far from statistical importance given
the high variety of face images. In this paper, we tackle the age
estimation problem on a more challenging face database with
8 000 images, 1 600 subjects, and ages ranging from 0 to 93.

The motivation of this work is from the observation on the
age labels of face images. The age labels are nonnegative and
ordinal, and are often uncertain for some databases, while these
characteristics are rarely exploited by previous algorithms. Tra-
ditional algorithms for age estimation can be roughly classi-
fied into two categories. The first category divides all possible
ages into multiple groups, and then considers the age estima-
tion problem as a general multiclass classification problem. The
methods in [9] and [10] belong to this category. They ignore the
ordinal information of the age labels and can only predict the
age at a coarse precision. The second category considers age es-
timation as a regression problem and current techniques require
the age label to be a fixed value in the model training stage, not
an interval. However, when we obtain the facial images, espe-
cially multiple images of different ages from the same person, it
is often difficult to acquire the accurate ages, instead only rough
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age ranges are available. On the other hand, as mentioned be-
fore, the age is commonly recorded as an integer value, but the
truth is that when we say a person is age 30, we mean that the
age is possibly within the interval . Hence, it is more re-
liable for the age to be finally expressed as an interval instead
of a fixed value. Traditional regression algorithms cannot di-
rectly solve the problem with uncertain labels, and they may
also output negative ages; hence, it is desirable to propose a new
formulation for the age estimation problem.

B. Backgrounds and Motivations From Pose Estimation

Similar to age estimation, current research on appearance-
based head pose estimation can also be roughly divided into two
categories. The first category [13], [14] formulates pose estima-
tion as a conventional multiclass pattern recognition problem,
and only rough pose information is inferred from these algo-
rithms. The second category takes pose estimation as a regres-
sion problem, and nonlinear regression algorithms (e.g., neural
networks [20]) are used for learning the mapping from the orig-
inal appearance features to the head pose label.

The motivation of this paper is from the observations on the
methods to obtain the pose ground truths of the samples. For
some databases, the ground truths are obtained from the esti-
mations of several observers, and as shown in Fig. 1, a large
variation often exists among the estimated labels from different
observers. Another popular way to obtain the pose ground truths
is displayed in Fig. 2 used for Pointing’04 [8]. All images of this
database were taken using the FAME Platform of the PRIMA
Team in INRIA Rhone-Alpes [8]. To obtain different poses,
markers are put in the whole room, and each marker corresponds
to a pose in two directions. Post-its are used as markers. The
whole set of post-its covers a half-sphere in front of the person.
In order to obtain the face in the center of the image, the person
is asked to adjust the chair to see the device in front of him or
her. After this initialization phase, the person is asked to stare
successively at 93 Post-it marks, without moving his or her eyes
[8]. This kind of system requires the precise cooperation of the
users and, hence, the obtained pose labels are not so exact, which
again motivates us to propose a new learning framework for
pose estimation by taking the uncertainties of the pose labels
into account.

III. NONLINEAR REGRESSION WITH

UNCERTAIN NONNEGATIVE LABELS

For the human age or pose estimation problem, the
image set for model training is denoted here as a matrix

, , where is the image number
and is the feature dimension. The uncertain nonnegative
label for the image is denoted as , where . The
task is to predict the nonnegative label of the new image , and
our solution to this general problem is as follows.

A. Problem Formulation

1) Nonlinear Regression From Image Features to Nonneg-
ative Label: Generally, rough age or pose estimation can be
conducted by separating all possible ages or poses into several
groups, and then formulating them as a general multiclass clas-
sification problem. In this way, for a more precise estimate, a

Fig. 2. Pose label capture system used in [8] (with some modifications on la-
bels).

greater number of classes will be used and, consequently, more
samples will be required for learning a reliable estimator. In this
paper, we take the age/pose estimation problem as a nonlinear
regression problem, and the nonlinear formulation is based on
the kernel trick [15].

Assume that we have a set of kernel mapping functions, de-
noted as , where is the number
of kernels, and , , is the
kernel mapping function with as the higher or infinite di-
mensional Hilbert space and the corresponding kernel function

. Meanwhile, let the combined kernel
mapping function be .

In this paper, we model the nonnegative label as the Frobenius
norm of a matrix, and specifically, we have

(1)

where is the matrix to give different weights for
different kernels, and the operator is defined as

...
...

. . .
...

The symbol is the transformation matrix that trans-
forms the feature from the higher dimensional feature space
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Fig. 3. Illustration of the process from the original image datum to the final
label.

into a lower dimensional one, and it is represented as the
linear combination of , that is,

where . The
number and are the expected column numbers of the ma-
trix and , and are automatically determined as described
afterward. The whole flowchart from the original image data to
final labels is illustrated in Fig. 3.

Here, for each sample , we define a data-specific kernel
matrix as

(2)

and for an image , this kernel matrix is written as . Then,
the function in (1) can be rewritten as (3), shown at the bottom
of the page, that is

(4)

This formulation of the prediction function is much simpler than
that in (1).

2) Discussion: Why do we use the Frobenius norm of a flex-
ible matrix for approximating a label? The reasons are two-
fold. On the one hand, the labels commonly have lower bounds
and can be assumed to be nonnegative after a translation, say

for age and for pose in this work, and the norm
operator can naturally guarantee the nonnegative property. On
the other hand, (4) is equal to , where

can be considered weak regressors and, hence, the
sum of these weak regressors may bring greater approximation
capability than a single weak regressor.

3) Uncertain Labels to Inequality Constraints: According to
(4), the uncertain nonnegative label of the sample (i.e., )
can be expressed as the two inequalities

(5)

(6)

4) Objective Function: Avoiding Overfitting and Pursuing
Simplicity: As described before, can be consid-
ered a weaker regressor. A reasonable way to reduce the possi-
bility of overfitting and promote the algorithmic generalization
capability is to control the rank of the transformation matrices
and and, consequently, reduce the number of weak regressors.
Moreover, there may be infinite solutions that satisfy all of the
constraints in (5) and (6). It is desirable to provide a criterion
for guiding the selection of the optimal solution and pursuing
lower ranks of the parameter matrices is a feasible strategy.

We will present a method for controlling the ranks of the
transformation matrices based on sparsity property. Similar to
the sparse support vector machine [2] method, our algorithm
employs the norm to control the sparsity of the parameters.

As we expect to control the ranks of the transformation ma-
trices, we do not compute the matrix and directly; instead,
we compute the matrices

(7)

Here, we take as an example to demonstrate how to control
the matrix rank. Take the singular value decomposition of as

(8)

where is a square orthogonal matrix and
. Then, controlling the rank of the matrix

is equivalent to controlling the sparsity of the diagonal ele-
ments of matrix . Enlightened by the Sparse SVM, we simply
minimize the norm of the diagonal elements of , that is

(9)

where is the trace of a square matrix. The equality is satis-
fied owing to the fact that all ’s from the positive semidefinite
matrix are nonnegative.

Remark: can also be considered as the norm of
, which are the singular values of with

. But as discussed later, the optimization problem takes
and as variables directly, and the constraints are all linear
inequalities. Hence, it is reasonable to control the sparsity of

directly. Similarly, we can control the rank of
the matrix by minimizing .

According to the definition in (7), the lefthand items in con-
straints (5) and (6) can be expressed by and as

(10)

...
...

. . .
...

(3)
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where the first equality is obtained from the fact that
for any matrix , and the second equality is obtained

from the fact that for any matrices and
with proper dimensions.
Based on the aforementioned constraints and the objective

function, the regression problem with uncertain nonnegative la-
bels can be formally defined as

(11)

where and mean that and are positive
semidefinite.

In this problem, the objective function is convex, yet the fea-
sible solution set is possibly nonconvex; hence, it is essentially
a nonconvex optimization problem and, consequently, a closed-
form solution does not exist. Naturally, we present a proce-
dure to optimize and iteratively, and in each step, the
problem is then converted into a convex optimization problem.
The semidefinite programming toolbox can be applied for the
step-wise optimization.

B. Iterative Parameter Optimization

Iterative optimization along different axes is very common in
nonconvex optimization literature. Here, we solve the optimiza-
tion problem with respect to by iteratively optimizing
one parameter matrix while fixing the other one.

For the given , the constraints 2–3 in the optimization
problem (11) are changed to

(12)

(13)

where .
With the aforementioned constraints and the objective func-

tion in (11), the matrix can be obtained by optimizing a
semidefinite programming problem as shown in Algorithm 1.
The objective function in Algorithm 1 is convex, and the op-
timization does not suffer from the local optimum issue [21].
There are several general-purpose toolboxes and polynomial-
time solvers available for solving the semidefinite programming
problem. In this paper, we utilize the solver SeDuMi and the
CSDP 4.9 toolbox in MATLAB [3]. The computational com-
plexity of semidefinite programming depends on the implemen-
tation, and more details are referred to in [3].

Algorithm 1 Procedure to learn matrix

1) Inputs: image set along with the uncertain nonnegative
labels , , and the matrix .

2) Solve the semidefinite programming problem defined below.

Minimize .

1: ;

2: , ;

3: , .

3) Output the matrix .

Similarly, for the given , the constraints 2–3 in the opti-
mization problem (11) are changed to

(14)

(15)

where .
Then, the optimization problem in (11) is converted into a

standard semidefinite programming problem as listed in Algo-
rithm 2. Similarly, it can be solved with the general-purpose
toolbox for the SDP problem.

Algorithms 1 and 2 are iteratively conducted to obtain the
stepwise result until the following stop criteria are sat-
isfied:

(16)

where is a manually defined threshold and is empirically set
to be in this paper. Smaller may result in smaller rank
for and , but it has little affection on the final regression
results since the weights for the extra components will be very
small.

1) Convergency Discussion: The optimization problem in
(11) is nonconvex due to the nonconvexity of the feasible so-
lution set and, hence, we cannot guarantee that the solution will
be globally optimal. Here, instead we prove that the iterative al-
gorithm will converge to a local optimum. Denote the objective
function as , then we have

(17)

Therefore, the objective function is nonincreasing, and we have
, which means that the objective function has a

lower bound. Then, we can conclude that the objective function
will converge to a local optimum.

After the convergence of the iterative procedure, the trans-
formation matrices and can be obtained from the singular
value decomposition of the obtained matrices and

(18)

(19)

where and . We then have

(20)

(21)

where means the submatrix consisting of the left
column vectors of the matrix and similarly

is the submatrix consisting of the left column vectors of the
matrix .

Remark: The column numbers of the matrix and are au-
tomatically determined and, consequently, the number of weak
regressors as well as the structure of the regressor are deter-
mined in an automatic manner.
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ALGORITHMIC ANALYSIS

In this section, we analyze the relationship between the tra-
ditional regression formulation and that defined by SDP in this
paper. We then compare our algorithm with other SDP based
algorithms.

Algorithm 2 Procedure to learn matrix

1) Inputs: image set along with the uncertain nonnegative
labels , , and the matrix .

2) Solve the semidefinite programming problem defined below.

Minimize .

1: .

2: , .

3: , .

3) Output the matrix .

C. Traditional Regressor versus SDP Formulation

A direct approach for age or pose estimation is to design the
proper regressor. In [11], the relationship between the label and
the features is modeled with quadratic regression, namely

(22)

where and are the vectors containing the image fea-
tures and the squares of the features, respectively; , , and
are parameters to learn. This simple regression method works
well for simple quadratic fitting problems, but for a complex
nonlinear regression problems, such as age and pose estimation,
it cannot produce a satisfactory fit.

Another popular regression algorithm is multilayer percep-
trons (MLP) with back propagation learning [20]. It has been
widely applied in various applications, such as face detection
and recognition. Yet, the structure of MLP need be manually
determined; the tuning of the structure is often time consuming
and needs an extra validation data set.

Although simple quadratic regression and MLP can be used
for age or pose estimation, they cannot directly handle regres-
sion problems with uncertain labels similar to what our pro-
posed SDP-based formulation does. Another disadvantage of
quadratic regression and MLP is that the output from them can
be negative, which is inconsistent with the nonnegative assump-
tion in this paper.

D. Other Problems Formulated With SDP

In the past few years, the optimization tool SDP has been used
for problem formulation in several works. Weinberger and Saul
[21] formulated the manifold embedding task as a semidefinite
programming problem and provided a new perspective beyond
spectral analysis for manifold learning. The sparse principal
component analysis problem was also formulated with SDP as
demonstrated in [1]. Though our proposed algorithm is also for-
mulated as an SDP problem, the objective function and the con-
straints in our algorithm are unique. Our proposed algorithm

utilizes SDP as a tool for formulating the nonlinear regression
problem with uncertain nonnegative labels.

IV. EXPERIMENTS

In this section, we first introduce the implementation details
of our algorithm for nonlinear regression with uncertain non-
negative labels, referred to as RUN hereafter. Then, the supe-
riority of uncertain labels over fixed labels is justified with a
toy problem; and the algorithmic convergency property is veri-
fied by the experiments on the FG–NET1 database. Finally, the
human age databases—FG-NET and Yamaha databases—and
Pointing’04 pose database are used to systematically evaluate
the effectiveness of the RUN algorithm in estimation accuracy
in comparison with the state-of-the-art algorithms [7].

A. Implementation Details

Algorithm 3 Procedure to learn matrix with Relaxation.

1) Inputs: image set along with the uncertain nonnegative
labels , , and the matrix .

2) Solve the semidefinite programming problem defined below.

Minimize .

1: , , , .

2: , .

3: , .

3) Output the matrix .

In our implementation, two strategies are applied to facilitate
the RUN algorithm. It is possible that not all of the constraints
in Algorithm 1 and 2 can be satisfied in real applications and,
hence, we add relaxation parameters to ensure that the feasible
solution set is not empty. Following [3], we take Algorithm 1 as
an example to introduce how to add relaxation parameters, and
the details are listed in Algorithm 3.

As described in Section II-A, the column vectors of the
matrix lie within the space spanned by the kernel map-
pings of all training samples. Thus, the size of increases
along with the growth of the training set and, consequently,
the size of will be very large. To improve the scaling
capability, we constrain the column vectors of to be the
combination of certain prototypes from the training set, namely

, where is the selected
prototype, , and is the prototype number. We
conduct the -means algorithm for clustering the training
samples, and then the samples close to the cluster centers are
selected as prototypes. For all of the age estimation experi-
ments, the prototype number is set as 400, and the parameter
in Algorithm 3 is set to 1. Note that generally more prototypes
are used and better performance can be achieved; and greater

means more strict inequality constraints. The number 400 is
selected for the tradeoff between accuracy and computational
cost. The Gaussian kernels

1Online. Available: http://sting.cycollege.ac.cy/~alanitis/fgnetaging/index.
htm.
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Fig. 4. MAEs of the RUN algorithms with an uncertain label interval of width
10 and width 1, QM, and MLPs on the toy data.

are applied as the kernel candidates and we use four kernels
with parameters , , 1, 2, 3 in all
of the experiments, where is the standard deviation of the
sample data. For the pose estimation experiments, the prototype
number is set as 40, and the other parameters are the same as
those for age estimation.

In this work, RUN is compared with the traditional regres-
sion algorithms quadratic models (QM) and supervised neural
networks [11]. According to [7], the least squares fit (LSF) op-
timization algorithm commonly gives better performance than
the genetic algorithm; thus, the least-square fit optimization is
utilized for the quadratic models. For the neural networks, we
adopt the same configuration as in [12] (i.e., MLP with the back
propagation learning algorithm) and the network architecture
and parameters are also set the same as in [12].

1) Estimation Output: For an image , its estimated age is
output as .

2) Accuracy Measurements: Two measures are used to eval-
uate algorithmic performance. The first one is the mean abso-
lute error (MAE) criterion used in [7], [11], and [12]. MAE is
defined as the average of the absolute errors between the esti-
mated labels and the ground truth labels, i.e.,

where is the estimated age for the th testing sample, is
the ground truth age, and is the number of testing images.
Another popular measure is the cumulative score [7]

where is the number of samples in which the estimator
makes an absolute error of not higher than .

B. Toy Data: Effectiveness of Uncertain Labels

To examine the effectiveness of uncertain labels, we intro-
duce a toy example where we know the exact labels. In this toy
problem, the feature dimension is 2, and the underlying relation-
ship between the data and the label is

where and independently follow the uniform distribution
on the unit interval , and is the exact label from data
with .

To obtain the uncertain labels, the observed label is assumed
to be , where is random noise evenly dis-

Fig. 5. Sample aging images from one person in the FG–NET aging database.

tributed within the interval such that . Two-
hundred data samples are randomly sampled as the training set
and the labels with noise are used for model training; also, an-
other 200 data are sampled for testing, and the exact labels are
used for computing training and testing accuracy. For compar-
ison, the results from QM and MLP are also reported.

For our proposed RUN algorithm, we compare two types of
uncertainty scales: one is the uncertain labels with an interval
of width 10, namely, , and the other is
the uncertain labels with a smaller interval of width 1, namely

, which is very close to the fixed la-
bels. In these experiments, 100 prototypes are used, the kernel
number and are set as for age estimation experiments. Typi-
cally, it takes about 70 s for one iteration on a computer with a
2.8-GHz CPU and 2-GB memory. The comparison results are
displayed in Fig. 4, from which we have two observations: 1)
RUN is better than the other two regression algorithms in label
estimation accuracy and 2) the uncertain labels which consider
the noise of the labels can further promote estimation accuracy
of the RUN algorithm.

C. Databases for Age and Pose Estimation

Two aging face databases are used in our experiments. One is
the FG-NET aging database2, which contains 1002 face images
of 82 persons with ages ranging from 0 to 69. Some sample im-
ages of a person are displayed in Fig. 5. The evaluation method
for the FG–NET database is the leave-one person out (LOPO).

The other age database, Yamaha3, contains 8000 Japanese fa-
cial images of 1600 people in age ranging from 0 to 93. Each
person has five images and the Yamaha database is divided into
two parts with 4000 images from 800 males and another 4000
images for 800 females. Our experiments are carried out sepa-
rately on female and male subsets. For each subset, 1000 images
are randomly selected for model training while the remaining
3000 samples are used for testing. To the best of our knowledge,
Yamaha is the largest aging database ever reported.

For the FG-NET database, each person has multiple images of
different ages and, hence, many other algorithms such as aging
patterns subspace (AGES) [7] and weighted appearance specific
(WAS) [12] are applicable. For comparison, we use the same
feature set as in [7] for the FG–NET database. First, the first 200
appearance parameters [5] based on the 68 key facial points are
used as input for age estimation. For detailed information on

2Online. Available: http://sting.cycollege.ac.cy/~alanitis/fgnetaging/index.
htm.

3To protect the portrait rights of the participants, sample images of the
Yamaha face database are not shown here.
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Fig. 6. Convergence of the objective function � and � . (a) Objective value versus iteration number. (b) �� �� � versus iteration number. (c) �� �� �
versus the iteration number.

Fig. 7. Cumulative scores of the age estimation for QM, MLP, and RUN at error levels from 0 to 20 years for different data sets.

shape, texture, and appearance parameters, please refer to [4].
For the Yamaha database, the positions of the key facial points
are not provided and, hence, the original gray-level values are
used instead as features by normalizing the images to size 64
64 pixels and fixing the locations of the two eyes.

The Pointing’04 head pose database [8] consists of 15 sub-
jects. The nose tips are manually marked, and we crop the faces
to the size of 64 64 pixels. In our experiments, 52 images from
four subjects are used, and 13 observers are invited for labeling
the poses by rotating a 3-D face head[22].4 As shown in Fig. 1,
uncertainty exists in the labels from different observers.

D. Convergency Justification

In this subsection, we systematically evaluate the conver-
gency property of the RUN algorithm from three aspects: 1) the
convergency of the objective function value; 2) the convergency
of the transformation matrix , which is characterized by

; and 3) the convergency of the transformation
matrix , which is characterized by .

The above properties are evaluated on the FG–NET database,
and detailed results are shown in Fig. 6. In this experiment, we
can see that the objective value monotonically decreases and
converges together with the parameter matrix and after
about 20 iterations.

E. Age Estimation Results

In this subsection, we conduct detailed age estimation exper-
iments on the aforementioned age databases. According to [7],
AGES achieves the best performance for age estimation, fol-
lowed by the WAS [12]. Thus, we compare RUN with AGES
and WAS for the experiments on the FG-NET aging database.
For the RUN algorithm, the fixed age label is replaced with the

4These data labels are collected for comparison research of man and machine
in pose estimation capability.

corresponding uncertain one. As mentioned before, when we
say that the label is (integer) for the sample , his or her
exact age can be any real value within the interval
and, hence, for RUN, the uncertain label for sample is set as

, where is the minimal positive number that a
computer can encode. Of course, a more reliable estimator can
be achieved if we are able to obtain specific uncertainty infor-
mation for each training image.

Fig. 7 displays the cumulative scores of different algorithms.
Fig. 8 shows the comparison results of age estimation on
FG–NET with only shape, texture, and the combined shape
with texture. Fig. 9 displays the MAEs of different age groups
for RUN with uncertain labels and RUN with fixed labels,
and Table II lists the detailed MAEs of different algorithms.
In our implementation, the vectors in the matrix and
corresponding to the singular values of less than 10 are
removed. For the FG–NET database, the rank of the derived
matrix ranges from 9 to 33 with respect to different training
sets in the LOPO strategy, and the derived matrix takes the
rank of 10 and 11 for the Yamaha female and male databases,
respectively. The final rank of matrix turns out to be 1 or 2
for these two aging databases.

From these results, several interesting observations are de-
rived.

1) RUN reaches the lowest MAEs across both databases. On
the FG-NET database, RUN brings an approximate 15%
deduction of MAE compared with the state-of-the-art al-
gorithm AGES [7]. Also, the uncertain labels bring extra
accuracy improvement over fixed labels for the RUN algo-
rithm as reported in Fig. 9 on the FG–NET database.

2) The Yamaha database is more challenging for age estima-
tion than the FG–NET database, and the estimation accu-
racies from the evaluated algorithms are relatively lower
than those in the FG–NET database.
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TABLE II
MAES OF DIFFERENT ALGORITHMS ON TWO DIFFERENT DATABASES AND OVER DIFFERENT AGE RANGES.
NOTE THAT #SAMPLES MEANS THE NUMBER OF SAMPLES FOR EACH AGE GROUP OF THE FG-NET DATABASE

Fig. 8. Cumulative scores of the age estimation from RUN at error levels from
0 to 20 years on the FG–NET database for three cases: shape only, texture only,
and combining shape with texture.

Fig. 9. MAEs for different age groups of the FG-NET database compared be-
tween RUN with an age interval of width 1 and RUN with interval of width 0,
namely, fixed labels.

3) The average MAE from the QM-based estimator is about
27% lower than that of the average MLP-based estimator in
the FG–NET database; while the MLP generally performs
better than the QM in the Yamaha database.

4) The results in Fig. 8 show that shape information is also
very important for age estimation, and its results are even
almost as good as the results from texture only. One evi-
dence for this observation may be that the facial contours
of children are often more likely round than seniors. For
the experiments on the FG–NET database, the facial posi-
tions are manually labeled and, hence, the results are rea-
sonably good; but our offline experiments on the Yamaha
database show that the current face alignment algorithm

Fig. 10. Cumulative scores of the pose estimation for quadratic model (QM),
MLPs, and RUN at error levels from 0 to 30 .

is still not good enough to provide accurate positions for
shape-only-based age estimation.

F. Pose Estimation Result

For pose estimation, all algorithms are conducted 13 times,
and each time, the labels from one observer are used for training
QM and MLP, and the labels with the interval length as the stan-
dard deviation of the labels from all 13 observers are used for
training the RUN algorithm. The leave-one-image-out experi-
mental results are shown in Fig. 10, which illustrates that RUN
is better than QM and MLP in accumulative scores for almost
all error levels. The average MAE for RUN is 24.7 , which is
much smaller than 27.1 for QR and 33.2 for MLP.

V. CONCLUSIONS AND FUTURE WORKS

We have proposed in this paper a semidefinite programming
formulation for automatically designing regressor based on
training samples with uncertain nonnegative labels. Encour-
aging experimental results were achieved on two human aging
databases, one of which is the largest one ever reported, and
one pose database compared with state-of-the-art regression
algorithms which did not take into account the uncertainty
property of the labels.

Our proposed algorithm is general for regression problems
with uncertain nonnegative labels, and we are planning to fur-
ther investigate this algorithm from three aspects: 1) how to se-
lect the parameter in a rational way such that it acts as the
weighting parameter in support vector machines (SVMs) [15];
2) how to efficiently solve the SDP problem when the number
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of prototypes is over 2000; 3) the experiments on the effective-
ness of the shape texture-based age estimation motivate us to
design a better algorithm for more accurately locating the key
feature points on the face and further improving the age estima-
tion accuracy; and 4) person-independent age estimation may
be achieved if we consider the identity information in designing
regressors.
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