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Abstract

For the problem of image registration, the top few relialderespondences are often relatively easy to obtain,
while the overall matching accuracy may fall drasticallythe desired correspondence number increases. In this
paper, we present an efficient feature matching algorithemtploy sparse reliable correspondence priors for piloting
the feature matching process. First, the feature geonretetonship within individual image is encoded as a spatia
graph, and the pairwise feature similarity is expressed aipartite similarity graph between two feature sets; then
the geometric neighborhood of the pairwise assignmentpgeesented by a categorical product graph, along which
the reliable correspondences are propagated; and finallpsed:form solution for feature matching is deduced
by ensuring the feature geometric coherency as well as s&irf@ature agreements. Furthermore, our algorithm is
naturally applicable for incorporating manual correspemak priors for semi-supervised feature matching. Extensi
experiments on both toy examples and real-world applinatdemonstrate the superiority of our algorithm over the
state-of-the-art feature matching techniques.
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. INTRODUCTION

Feature matching of two objects is a fundamental problenedomputer vision research, and a variety of computer
vision tasks heavily rely on the feature matching resulighsas object tracking [11] and recognition [15] [14],
image warping [3] and stitching [7], an®D reconstruction [2] [16] [1]. The feature matching accyracay be
affected by various factors including feature descriptemnilarity measurements, and matching approaches.

Substantive works have been devoted to seeking the comdspoes between features extracted from two images.
Among them, recently Grauman et al. [10] considers the infagtures as unordered elements in sets of different
cardinalities and proposes a pyramid matching algorithnptosuing inexact correspondences. Local feature plays
an important role in this task, and the popular feature detecsuch as SIFT [14], salient region detector [12],
as well as scale and affine invariant interest point detejd@}, tend to output interest points or regions in a
structured way. Also, it is observed that the salient poamd SIFT features extracted from the images with similar
structures often share similar local spatial distribusiorhus the feature location also conveys important inféiona
for feature matching. The works in [6] [20] and [18] presepp@aches for utilizing structure information. They
formulate the feature matching problem with integer quéciarogramming (IQP) or Semidefinite Programming
(SDP) techniques, and hence severely suffer from the highpatational cost. Leordeanu et al. [13] proposes a
spectral analysis method for promoting feature matchinguecy with the geometric structure information and
designs an iterative procedure to eliminate the conflistiamong the derived correspondences. [9] adds affine
constraints to the spectral matching formulation and psepa normalization procedure to improve the matching
accuracy.

One common issue encountered by all above feature matchgongtams is that the top few matches with the
highest similarities are often very accurate, but the matchccuracy falls rapidly when the desired match number
increases, especially for data with noises. Another issigéng in real-world applications is that the unsupervised
feature matching algorithms often cannot provide suffitjeaccurate results for the subsequent applications such
as image stitching and object recognition. A natural qoess how to incorporate extra clues for promoting feature
matching performance. In this work, we present a solutionféature matching with theeliable correspondence
priors, from the top few reliable correspondences obtained byeeitbnventional feature matching algorithms or
manual labeling.

First, the relative geometric relation of the feature paiithin an image is encoded as a spatial graph, and the
matching assignments are considered as the vertices ofrdldeiq graph constructed from two spatial graphs of
the images to be matched. Then, based on the these spaii#dng| the assignment neighborhoods are defined on

the product graph and the point-to-point matchings are girepagated from those reliable correspondences to the
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Fig. 1. Flowchart of correspondence propagation from béiaorrespondence priors for feature matching.

remaining ones. Finally, we deduce an efficient closed-feotation for the feature matching problem by ensuring
both spatial consistency and feature similarity agreement

The works in [13], [6] and [18] also try to employ the featuoedtion information for matching, while our work in

this paper differs from them in that we make full use of theinfation provided by those reliable correspondences.
Moreover, benefitting from the propagation property, oanfework is easy to incorporate human interactions for
the guidance of correspondence searching. An illustradfothe whole framework for correspondence propagation
from reliable correspondence priors is displayed in Figlre

Here, we would like to highlight some aspects of our propoRetlable Correspondence Propagation (RCP)

algorithm:

1) RCP makes full use of the prior information of the spardialoée correspondences, and is naturally applicable
for incorporating the interactive manual labeling to ferttpromote feature matching accuracy in a semi-
supervised way.

2) The algorithmic objective provides a unified formulatitrat employs both the categorical product graph
constructed from two spatial graphs for characterizingiapeoherency and the bipartite similarity graph for
representing feature similarity agreements.

3) A closed-form solution is deduced with comparably low potational cost, and hence our algorithm is

applicable to real-world image registration problems.



[l. PROBLEM FORMULATION AND SOLUTION
A. Notations and Graph Construction

The two sets of features, e.g. extracted from SIFT [15], wittwo images to be matched are denoted as
ol = {ol,¢d, ..., 041} and @2 = {#?, 43, ..., #3. } With ¢F = {fF z¥}, where fF is the feature vector and? is
the feature point location in the* image ¢ < {1,2}).

Let G* = (V¥  E¥) be an undirected spatial graph with vertex Bétand edge seE” for the k'* image. The
edges inE* reflect the geometric neighboring relations among the featuand can be defined in terms jof
nearest-neighbor or anball distance criteria in the feature position space. In addite;m adjacency/weight matrix

W* is defined for the grapli’*. One way to compute the weight matrix is directly based oreithge information,

namely
1 if 2F and wf are connected,

0 else.

k2
_ J

There are also other ways for computing the similarity matsuch as the heat kernel [4], i.ezzfj =e Mffz
wheret € R is a parameter to define the heat kernel.

To encode the pairwise feature similarity between two sktsaiures, we introduce the similarity graph, denoted
as a tripletG'? = (®!, ®2, £'?). The similarity graphG'2 is a bipartite graph, and the weight mat$xof G2

are computed from the cosine distances of the feature paesuned in the feature vector space.

B. Regularization on Categorical Product Graph

The feature matching process can be considered as seekingrg function over the product set @' and ®2:
M: @t x % - {0,1},

where x denotes the set product and the function vdlueeans matching an@for mismatching. To transduce the
matching assignment from the reliable correspondencespiacthe other feature pairs, we first give a neighborhood

definition for the matching assignments.

Definition: Supposed! = {¢} , ¢; , ...,qﬁ}N]} and ®* = {¢? , 47, ...,qﬁ?Nz} are the vertices of grapti’ and G2

respectively. Two assignments;,;, = {¢] ,¢7,} andm;,j, = {¢] ,¢3} are neighbors iff both pair§s; , ¢} }

and{¢; , ¢3,} are neighbors irG' andG* respectively, namely,

Miyiy ~myj, ff ¢ ~¢j and ¢F, ~ ¢ @

J2?

wherea ~ b meansa andb are neighbors on the corresponding graph.
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Fig. 2. Demonstration of categorical graph product: gréhh graphG-, and their categorical graph produGt x G2

Suppose binary weights are utilized. According to the dédinmi(1), the assignment gragh® is the categorical

product graph ofZ! andG?, i.e., G* = G' x G?, and the adjacency of the assignments can be expressed as:

wﬁ“l i2 MMy 5o - wéil ¢Jll wifz ¢?2 ' (2)
An example of the categorical product graph is demonstristddgure 2.

Defined on the space of Cartesian product set, the assigniviecén be regarded as a binary matrix /8f by

No, i.e.,
miq mi9g m1N2
M _ mo1 mo2 m2N2 ,mij c {0, 1} (3)
my,1 MmN,2 ... MN N,

where the elementsy;; corresponds to the assignment @ to (b?. To facilitate the solution, we arrange the
columns of M consequently to construct a vectﬂff, i.e.,

—

M =vec(M) = [mi1,ma1, ..., mN, 1, M12, M22,
T
<y TMN, 2, "'7m1N27m2N2>"'7mN1N2] ; (4)

wherewvec(-) is the vectorization operator.
Now the assignment is converted into a function on MeV, dimensional vector space and thus the adjacency

matrix W of the assignments is al; No by N1 N, matrix, i.e.,
Wa — W2T ® Wl, (5)

where® is the Kronecker product operator and the correspondinghgf¥ is the categorical product graph 6f
andG?2. Note that the adjacency matrix of the categorical produaply can also be defined #8* = W' @ W? if
we rearrange the sequence of assignments while here wethddpst definition so that the assignment arrangement
is coherent with that of\/. When thelW! and W2 are not binary, the adjacency matfik® calculated from (5)
can still capture the relative geometric relations of theigrements.

To introduce a spatial consistency for the assignments, akenthe assumption that the neighboring vertices

on the categorical product graph share similar assignmaloies. This is quite natural in the representation of



structural feature sets, since in real-world applicatidhe feature points that constitute certain kind of strreu
are often extracted together and thus the features are witechedsetby set Emphasizing this assumption can
also transduce theeliable correspondence priorderived from manual labeling or automatic approaches to the
neighboring assignments and then the assignments aregatepaalong the categorical product graph until a final
balance is drawn.

In our framework, the spatial consistency assumption ifilled by a graph Laplacian penalty item in the
objective. According to the spectral graph theory [5] [1®8$nalizing the Graph Laplacian leads to a solution with

the locality preserving property. The Graph Laplacian carekpressed as:
7 ang 1 a v v
MTLemMT = 5 Zwij(mi —m})?,
ij

wherem? is the i element of M, L* = D — W is the Laplacian matrix of the categorical product graph
and D® is a diagonal matrix withD{. = Zj Wi If m{ andm are adjacent in the graph, i.e., thg; is large,
the minimizing of the objective will lead to a small distanbetweenm; and mY, and then the reliable prior

correspondence can be propagated along with this spatiaistency property.

C. Consistency in Feature Domain and Soft Constraints

Besides the geometric consistency, we also emphasize tierarce in the feature domain. The pairwise feature
agreement is encoded by thé, by N, adjacency matrixS of the similarity graphG'2. The coherence of the

feature similarity is then converted into the maximizatimfritem,

1S © M|, = vee(S) - vee(M) = STM,
w.rt. mf € {0,1}, (6)

where® is the matrix Hardamard produc¢t|, returns the sum of all the elements in mam'xg is the vectorization
of the matrix S, and the operatoris the inner product of two vectors.

Finally, for those one-to-one correspondence configuratia soft penalty is introduced, i.e.,

N, N
S (Al oM, -1+ (|4 0 M|, —1)?, @)

i=1 i=1

where A} is an N; by N, coefficient matrix with1 in the i*" row ando for others; A} is an Ny by N, coefficient
matrix with 1 in the i** column ando for other elements. The first term tends to matching eachuifean the first
image to a feature with the largest similarity in the second,@nd the second term tends to matching each feature

in the second image with a feature with the highest simjldritthe first one.



Vectorizing the coefficient matriced! and A% and arranging the derived column vectors, we construct the

constraint coefficient matriced; and A:

Ay (:,0) = vec(AY), Ay(:,i) = vec(AD).
Then the item (7) can be expressed as:

TT((‘A,{M - eNl)T(‘A,{M - 6Nl))

+Tr((AM — en,) (AT M — en)), (8)

where A; = ey, ® Iy, is an NN, by N; matrix, A, = Iy, ® ey, is an Ny N, by Ny matrix, ey is an N
dimensional column vector of andIy is an N by N identity matrix.

Note that for the one-to-one correspondence, we can alsosienpard constraints, i.e.,
AITM =en, Or flg]\_j = en,, 9)

but these conditions may not be satisfied, since the featdracted in one image may not have a correspondence
in the other image due to the noise, occlusion or the ineyuafithe feature set cardinality. Thus we adopt a soft

penalty in the objective and the affine constraints are apnseatly removed from the formulation.

D. Inhomogeneous Pair Labeling

Since the one-to-one matching is optimized on the prodwglgof the two input graphs, the number of variables
can be extremely large and it grows rapidly with the increafsthe input vertex number. The number of features
extracted depends on various factors such as the featurecexs, the complexity of surroundings, the scales
searched for maximum and the size of images. Generally sgigranent variables are highly redundant. Substantive
assignment variables are dispensable due to the low sityjilar, large feature distances between the involved featu
pairs. We call these assignmeiridomogeneous pairfkather than simply removing them, in our framework the
mismatchinformation of those inhomogeneous pairs is also emplo$eeécifically, they are assigned @s, which

indicate that the corresponding feature pairs will not becimed, i.e.,
M;j = My (j-1yxn, < 0if {¢],¢7} € 0, (10)

where ¥ is the set of inhomogeneous pairs. Then thiematchinformation of those inhomogeneous pairs is also

utilized to guide the solution and transduced to the remgimines.



E. Reliable Correspondence Propagation

In the following the known correspondences including soml@lble correspondences and certain number of
inhomogeneous pairs are called labeled assignments dedafsature pairs. We arrange the matching variables so

that the labeled assignments are placed ahead, i.e.,
M* = [M*; MY, (11)

whereM! represents the assignments of the labeled feature pditssorresponds to the assignment values of the
remaining unlabeled feature pairs to be estimafdd. is the rearranged assignment vector.
Correspondingly, the constraint coefficient matriégs A, and the vectorized adjacency matfof the similarity

graph are also rearranged, so that,
Ay = [AL; Ay, Ay = [Ab; Ay], and S =[S 5], (12)

whereflll, Ag, andS' are the coefficients and vectorized adjacency sub-matiilxeosimilarity graph for the labeled

assignments respectivel)giff, flg, andS* are the coefficients and vectorized adjacency sub-matrishiunlabeled

assignments; and*, A;, and S* are the rearranged coefficients and vectorized similariaply adjacency matrix.
Due to the variable rearrangement, the vertex order in thiegoacal product graph is also modified. The

rearranged adjacency matrik** and the corresponding Laplacian matfit* are

wg W L¢ L%
Wa*:< i l;),La*:( i gu>. (13)
ul Wuu Lul Luu

Integrating all factors and we get the final optimizationniatation for our feature matching framework:

I;/l?lfl _§*TM* + )\M*TLG*M*—F
AT (AT T — e, )T (AN — ex,))
(AN — ex )T (AT I — ex,)))
wort. m; €{0,1}, i€ {1,2,...,N;No} (14)

wherem? is the i*" element of M*, A and~ are coefficients controlling the balance among featurelaiityi,
spatial coherency and one-to-one penalty.

We relax the binary integer optimization problem to realueal by discarding the constraints in (14) and the
formulation is converted to an unconstrained quadratitntpation. Take the derivative w.r.fi/* and substitute

the equation (11), we obtain a closed-form relation betwbenabeled and unlabeled assignments:

M" = C N (B, — CyMY), (15)



Algorithm 1 Elicit k£ correspondences. [Input: M]

1: Output the correspondenee;; = {4}, ¢} = arg maxy: 42 M.
2: Remove fromM all potential assignments in conflict with;.
3: If column or row dimension of\/ become® or if the output correspondence number readhesop; otherwise,

go back to stef.

where
Cll Clu
C _< Cul Cuu >
=y (AT AT 4 ASAST) + ALY (16)

and

Bl

o=( )
o o 1 -

F. Rearrangement and Discretizing

To get the original assignmenit(, we first take the inverse process of the element arrangetesctibed above
and convert\/* to M, then reshape the derived assignment vector intdthey N, matrix M. Since the assignment
variables have been relaxed, we tried two discretizaticategyies: thresholding and eliciting. Setting a threshold
for discretization is natural and it can determine the gpomdence number automatically. This strategy is also
suitable for the cases in which the correspondences areeqoired to be one-to-one. On the other hand, in case a
fixed number of one-to-one correspondences are needed,signdm iterative correspondence eliciting procedure,
which is displayed in Algorithm 1. Finally the whole algdmihic process is listed in Algorithr.

[1l. ALGORITHMIC ANALYSIS
A. Selection of Reliable Correspondences

The accuracy of those reliable correspondences are triticefinal performance. One way to obtain these
reliable correspondences in the automatic matching canafiigun is simply to pick up a few pairs with the highest
similarity scores while the correspondences derived imway may be clustered together and their guidance for the
correspondence searching is thus limited. The work [8] pseg an Adaptive Non-Maximal Suppression (ANMS)
strategy to elicit a fixed number of interest features andhatdame time keep the the selected interest points
spatially well distributed. In this paper, we adopt the @spondence Elicit Procedure described in Algorithm

and the first several correspondences produced are regarthedreliable in the automatic matching configuration.
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Algorithm 2 Reliable Correspondence Propagation

1: Graph Construction: Contruct the spatial graph&' and G2? from the feature locations and calculate the
adjacency matrix for the categorical product graph usiigg= 2" @ W'. Construct the bipartite similarity
graphG'2 according pairwise feature similarity.

2: Constraint Coefficient Matrix Initialization: Initialize the constraint coefficient matricels and A according
to the cardinality of input feature sets.

3: Assignment Labeling: Initialize the corresponding assignments for those rédigtairs as1l and set the
assignment variables @sfor those inhomogeneous pairs with low similarity values.

4. Correspondence Propagation:Rearrange the assignment variables, the adjacency nsttite constraint
coefficient matrices so that the labeled assignments acegl@ front of the unlabeled variables and calculate
the closed-form solution in (15).

5. Rearrangement: Take the inverse process of the arrangement in $tepd get the correspondences using the

strategies described in Sec-Il.F.

The transductive property of our algorithm makes it easytoiporate human interactions for the correspondence
searching and a semi-supervised matching framework isaitderived. In this work, two configurations of human
interactions are used:

Exact Pairwise Correspondence Labelingin this configuration, the users are asked to give exacespondence
labeling for the guidance of matching, and the assignmetitsiéd by human are used as reliable correspondence
priors in the feature matching process.

Obscure Correspondence GuidanceTo facilitate the user labeling, we also provide an obsouagching scheme
in which the user only has to describe a rough correspond#fringage parts. The procedures used in the automatic
matching configuration are then employed to extract rediaidrrespondences within the indicated corresponding

areas.

B. Computational Complexity

The complexity of the inverse operation for arby n matrix is O(n?), which is greater than the spectral algo-
rithms ©(n?)). However, the matrixC,,, in our algorithm is sparse and exploiting this sparsity, tbenputational
cost can be greatly reduced. Also, efficient parallel athos exist for the gaussian elimination procedure in the
computation of the sparse matrix inversion problem and thesomputation time can be further shortened. Another
factor affecting the computation cost is the candidate matcvariable number, which determines the dimension

of the matrixC,,,. In our experiments;000 assignments with the largest similarity scores are fet@sethatching
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Fig. 3. Oxford real Image Transformation Database. Thesfoamations include viewpoint variation ((a) Graffiti (b)aWsequence), image
blur ((c) bikes and (d) trees sequence), zoom and rotatienk@rk and (f) boat sequence), illumination change ((gydey and JPEG
compression ((h) UBC).

candidates and the variable number can be adjusted acgdadihe requirement of the applications. Our algorithm

is much faster than the QP and SDP based algorithms and ieappl for the large scale real-world applications.
V. APPLICATIONS AND EXPERIMENTS

In this section, our algorithm is systematically evaluairedwo settings: unsupervised and semi-supervised. In
the unsupervised setting, those reliable correspondesreesgerived automatically; while in the semi-supervised
setting, the reliable correspondence priors are labelatlaily. In all the experiments, the SIFT [14] descriptor is

used for feature extraction and representation; the $gat@h is constructed usinip-nearest neighbors and the
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weights for the spatial graphs are calculated using heatebek (z,y) = exp{—||z — y||?/d2} with parameters

8, = 21/255 applied, wherd is the standard deviation of the feature locations. For imdagity graph,16 nearest
neighbors are used and the cosine distance is directly sst#waraph weight. The coefficieatis empirically set
as0.4 and~ is set a%9).05. In the inhomogeneous pair labeling process, we K#ep pairs with the top similarities

as candidate matchings and others are lab@l8dhe performance of our algorithm is systematically coragawith

the state-of-the-art feature matching algorithms, sucthasspectral correspondence technique (SC) [13] and the
matching algorithm used in [14] (SM), which compares theadise of the closest neighbor to that of the second-
closest neighbor. We take thé, by N, pairwise similarity matrix as the input/ for the Correspondence Eliciting
Procedure (CE) and the matching scores are also reportedQPhand SDP based algorithms are inapplicable for
comparison due to the large number of features involvedtieadjacency matri®/ in the spectral correspondence
technique [13], we assign a score that is linearly increpsiith the cosine distance between the feature and its
candidate corresponding feature to the diagonal elemémteShe adjacency matrix of the categorical product
graph in our algorithm represents the geometrical relatminassignments, the non-diagonal elementd/ois set

using the corresponding elementshin®.

A. Automatic Feature Matching on Oxford Image TransfororatDatabase

In this subsection, the unsupervised version of our algaris evaluated on the Oxford real image transformation
databask The Oxford database is a benchmark database for the fedéseiptor evaluation. It contains eight
subsets for six different geometric and photometric realgentransformations, including zoom, rotation, viewpoint
change, image blur, JPEG compression, and light variafiamo different scene types are involved for the case
of rotation, viewpoint change, and blur: one contains hoemegus regions with distinctive edge boundaries and
the other contains repeated textures of different formdchvFacilitates us to analyze the effect of changing the
image conditions and the scene type separately. Some iniagedord database are demonstrated in Figure 3.
The image width and height are resized1i$ of the original ones and for each imadé®0-500 SIFT descriptors
are extracted. Since the homographies between the reé&emerage and other images in each particular subset are
given, we can derive the ground truth matches for the evialuat

40-180 assignments are extracted as the reliable correspondesaes Algorithm 1 in the evaluation. The
matching score is calculated as the ratio between the nuofbErrect matches and the smaller value of detected
feature numbers from the image pair. The detailed resuétsdamonstrated in Figure 4-7. It is observed that our
algorithm generally reaches a higher accuracy compardu thé state-of-the-art techniques and the algorithmic
performance is stable over all the subsets. Although in ssitnation such as the JPEG compression the spectral

http://www.robots.ox.ac.uk/ vgg/ research/affine.
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technigue shows an excellent performance, it is not soestabinost cases.

Though the spectral based technique also employs geonigfioionation as well as feature similarity in the

matching process, our algorithm generally produces atbpédormance. The main reason is that our algorithm

essentially puts different weights on the correspondencésthe reliable correspondences are emphasized, while

this information is ignored in other state-of-the-art teatmatching algorithms.

B. Influence of Reliable Correspondence Number

In the unsupervised configuration, the performance of ogorahm relies on the accuracy of the reliable

correspondences, which also deteriorates as the cormspos number increases. It is interesting and neces-

sary to evaluate the performance of our algorithm with respe the number of automatically selectesliable

correspondences. Figure 8 shows the correct matching rnuwdssus the number of reliable correspondences

automatically derived. We can observe that the correctimatienber increases along with the increase of the reliable
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correspondence number within a reasonable range, and lteeacturacy falls when the reliable correspondence

number becomes too large to give an accurate guidance.

C. Matching Demonstration on Object Recognition Databases

In this subsection, we evaluate our algorithm on the Caltdih Object Recognition databasand ETHS0
databasé. Four categories of images are used in this demonstratien,themotorbikesand face images from
Caltech101 database as well as tliog and horseimages from the ETH0 database. Since for the objects of
different types, the correspondences may not be one-tpeaotieeshold of).01 is used in the discretization process
and thus the correspondence number is determined autathatieor comparison, the matchings with the largest
cosine distances are also plotted as baseline, whisréhe number of correspondences determined by our algarith
The matching results are demonstrated by Figure 9-11, irctwthie reliable correspondences drawn by hand are
marked by red stars, the obscure guidance indicated by humeraction is described by rectangles of different

2http://www.vision.caltech.edu/Image Datasets/Calt€dth
3http://www.vision.ethz.ch/projects/categorization/
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Fig. 8. The number of correct matches v.s. the number of aatioally selected reliable correspondences on the firstimveges of Graffiti
database.

Fig. 9. Semi-supervised RCP results by manual pairwiseespandence labeling (1st row) v.s. baseline algorithm (2mg.

colors and the automatically derived reliable correspande are plotted by small crosses. The correspondence
number of the two figures within the same column is the sanmnRhe results we can observe that the matching
accuracy is boosted with the guidance of the manually labeterespondences, and the unsupervised version of

our algorithm is also superior over the baseline algorithm.
V. CONCLUSION AND FUTURE WORKS

In this paper, we proposed an efficient feature matching dwaonk that transduces certain number of reliable
correspondences to the remaining ones by utilizing bothmgddac coherency constraints and feature agreements.
Furthermore, the framework is naturally extended to inocafe human interactions for promoting feature matching
performance. Experimental results showed that our algoritboth semi-supervised and unsupervised versions,
achieves a higher matching accuracy compared to the dttie-art techniques. We are planning to further
investigate our algorithm with other feature descriptongl &xplore the combination with the ANMS strategy

for reliable correspondence selection.
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