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Abstract

In this paper, we present a novel semisuper-
vised regression algorithm working on multi-
class data that may lie on multiple manifolds.
Unlike conventional manifold regression al-
gorithms that do not consider the class dis-
tinction of samples, our method introduces
the class information to the regression pro-
cess and tries to exploit the similar config-
urations shared by the label distribution of
multi-class data. To utilize the correlations
among data from different classes, we develop
a cross-manifold label propagation process
and employ labels from different classes to en-
hance the regression performance. The inter-
class relations are coded by a set of inter-
manifold graphs and a regularization item is
introduced to impose inter-class smoothness
on the possible solutions. In addition, the
algorithm is further extended with the ker-
nel trick for predicting labels of the out-of-
sample data even without class information.
Experiments on both synthesized data and
real world problems validate the effective-
ness of the proposed framework for semisu-
pervised regression.

1. Introduction

Large scale and high dimensional data are ubiqui-
tous in real-world applications, yet the processing and
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analysis of these data are often difficult due to the
curse of dimensionality as well as the high compu-
tational cost involved. Usually, these high dimen-
sional data lie approximately on an underlying com-
pact low dimensional manifold, which may turn the
problem tractable. Substantive works have been de-
voted to unveiling the intrinsic structure of the man-
ifold data, among which the popular ones include
ISOMAP (Tenenbaum et al., 2000), LLE (Roweis &
Saul, 2000), Laplacian Eigenmap (Belkin & Niyogi,
2003), and MVU (Weinberger et al., 2004).

Besides these unsupervised algorithms that purely ex-
plore the manifold structure of the data, researchers
have also well utilized the latent manifold structure
information from both labeled and unlabeled samples
to enhance learning algorithms with limited number
of labeled samples. Great success has been achieved
in various areas, such as classification (Krishnapuram
et al., 2005) (Belkin et al., 2005), manifold alignment
(Ham et al., 2005) and regression (Belkin et al., 2004)
(Zhu & Goldberg, 2005). Recently increasing atten-
tion has been drawn to the semisupervised regres-
sion problem by considering the manifold structure.
(Chapelle et al., 1999) proposed a transductive algo-
rithm minimizing the leave-one-out error of the ridge
regression on the joint set composed from both labeled
and unlabeled data. To exploit the manifold structure,
(Belkin et al., 2004) adds a graph Laplacian regular-
ization item to the regression objective, which imposes
extra condition on the smoothness along the data man-
ifold and it has proved to be quite useful in applica-
tions. (Cortes & Mohri, 2007) first roughly transduces
the function values from the labeled data to the unla-
beled ones utilizing local neighborhood relations, and
then optimizes the global objective that best fits the
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labels of the training points as well as the estimated
labels provided by the first step.

None of these state-of-the-art regression algorithms
make use of the class information to guide the re-
gression. In real-world applications, however, multi-
class samples are ubiquitous and samples from differ-
ent classes can be regarded as lying on multiple man-
ifolds. For example, in age estimation, the personal
aging process varies differently for different genders,
but there still exists consistency between the aging
processes of male and female. In the pose estimation
from images of multiple persons, each person can be
regarded as one class and the images vary similarly
with poses from different persons. Moreover, we may
also encounter the multi-modality samples whose rep-
resentations may not be consistent due to the lack of
correspondence, while the inner manifold configuration
for the label distribution across different modalities
may still be similar. Besides, in the function learning
stage of the semisupervised regression framework, the
class or modality information is usually easy to obtain,
thus it is desirable to utilize this information to further
boost the regression accuracy. To fully exploit the re-
lations among data manifolds, we develop in this paper
a semisupervised regression algorithm called TRIM

(Transductive Regression piloted by Inter-Manifold
Relations). TRIM is based on the assumption that
the data of different classes share similar configura-
tion for label distributions. In our proposed algorithm,
manifolds of different classes are aligned according to
the landmark connections constructed from both the
sample label distance and manifold structural similar-
ity, and then the labels are transduced across different
manifolds based on the alignment output. Besides the
intra-manifold smoothness condition within each class,
our method introduces an inter-manifold regulariza-
tion item and employs the transduced labels from var-
ious data manifolds to pilot the trend of the function
values over all the samples. In addition, the function
to be learnt can be approximated by the functionals ly-
ing on the Reproducing Kernel Hilbert Space (RKHS),
and the regression on the induced RKHS directly leads
to an efficient solution for the label prediction of the
out-of-sample data even without corresponding class
information.

2. Background

2.1. Intuitive Motivations

Consider the problem of adult height estimation based
on the parents’ heights. Dramatic difference exists be-
tween male and female adults, while the general config-
uration of the height distribution within each gender

−0.5 0 0.5 1 1.5 2
−1

0

1

−1

−0.5

0

0.5

1

Figure 1. Demonstration of the inter-class relations. La-
beled samples are marked by ′+′ and the inter-manifold
relations are indicated by the dashed lines. The manifolds
are aligned and the sample labels are propagated across
manifolds to pilot the regression.

may still be similar: the taller the parents are, the
higher the children are supposed to be. While once we
mix up the data from both genders, the height distri-
bution may become complicated. Figure 1 displays a
toy example for the obstacles encountered in the multi-
class regression problem. We have two classes of sam-
ples and the function values within each class manifold
share similar configurations, while the number of sam-
ples and labels may vary across classes. As is shown in
the upper part of Figure 1, it is difficult to get a sat-
isfactory regression if we put all the samples together
due to the complex structures produced by the mani-
fold intersections. On the other hand, if the regression
is carried out separately on different classes, the ac-
curacy could still be low due to the lack of sufficient
labeled samples for each class. Also, for the incom-
ing out-of-sample data, the prediction cannot be done
without class information. Moreover, we may face
some regression problems with multi-modality sam-
ples, e.g., the estimation of human ages from both pho-
tos and sketch images. It is meaningless to compose
data of different modalities into one manifold since the
semantics of the features from different modalities are
essentially different, while it is still possible that the
intra-modality label configurations are similar. In this
paper we focus on the multi-class regression problem,
but our framework can also be easily extended to give
predictions for the multi-modality data.

2.2. Related Work

Multi-view learning (Blum & Mitchell, 1998) tech-
nique can also be applied to the regression problem
with multi-class data. Denote the labeled and unla-
beled instances as xl ∈ X l ⊆ X and xu ∈ X u ⊆ X
respectively, where X l,X u,X are the labeled, unla-
beled and whole sample sets. State-of-the-art semisu-
pervised multi-view learning frameworks employ mul-
tiple regression functions from the Hilber space Hv so
that the estimation error on the training set and dis-
agreement among the functions on the unlabeled data
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are minimized (Brefeld et al., 2006), i.e.,

f̃v|
Ml

v=1 = min
fv∈H

Ml
∑

v=1

(
∑

x∈X l

c(fv(xl), y(xl)) + γ‖fv‖
2)

+λ

Ml
∑

v1,v2=1

∑

x∈Xu

c(fv1
(xu) − fv2

(xu)),

(1)

where y(x) is the sample label, fv|
Ml

v=1 are Ml multiple
learners and c(·) is a cost function.

We would like to highlight beforehand some properties
of our framework compared to the multi-view learning
algorithms:

1. There exists a clear correspondence between the
multi-view data from the same instance in the
multi-view learning framework, while our algo-
rithm does not require the correspondence among
different manifolds. The data of different modali-
ties or classes may be obtained from different in-
stances in our configuration, thus it is much more
challenging to give an accurate regression.

2. The class information is utilized in two ways:
a) Sample relations within each class are coded by
intra-manifold graphs and a corresponding regu-
larization item is introduced to ensure the within-
class smoothness separately.
b) A set of inter-manifold graphs are constructed
from the cross manifold label propagation on the
aligned manifolds and an inter-manifold regular-
ization item is proposed to fully exploit the infor-
mation conveyed among different classes.

3. The class information is used in the function
learning phase but no class attributes are required
for the out-of-sample data in the prediction stage.

3. Problem Formulation

3.1. Notations

Assume that the whole sample set X consists of N
samples from M classes, denoted as X1,X2, ...,XM .
For each class Xk, Nk = lk + uk samples are given,
i.e.,

Xk = {(xk
1 , yk

1 ), ..., (xk
lk , yk

lk), (xk
lk+1, y

∗k
lk+1),

..., (xk
lk+uk , y∗k

lk+uk)},

where Y k
l = [yk

1 , yk
2 , ..., yk

lk ]T represents the function
values with respect to the given labeled samples and
Y k

u = [y∗k
lk+1, ..., y

∗k
lk+uk ]T corresponds to the function

values of the remaining unlabeled data to be estimated
in the kth class. In this paper, the ′label′ refers to a
real value to be regressed.

Let Gk = (V k, Ek) denote the intra-class graph with
vertex set V k and edge set Ek constructed within the
data of the kth class. Here we focus on the undi-
rected graph and it is easy to generalize our algo-
rithm for directed graphs. The edges in Ek reflect
the neighborhood relations along the manifold data,
which can be defined in terms of k-nearest neighbors
or an ǫ-ball distance criterion in the sample feature
space F . One choice for those non-negative weights
on the corresponding edges is to use the heat kernel
(Belkin & Niyogi, 2003) or the inverse of feature dis-
tances (Cortes & Mohri, 2007), i.e.,

wij =e
−‖Φk(xi)−Φk(xj)‖2

t

or wij =‖Φk(xi) − Φk(xj)‖
−1,

where t ∈ R is the parameter for the heat kernel and
Φk(·) is a feature mapping from X to the normed fea-
ture vector space F for the sample of the kth class.
For samples from different modalities/manifolds, the
feature mappings may be different. The other one is
to solve a least-square problem to minimize the recon-
struction error and get the weights wij :

wij = arg min
wij

‖xi −
∑

j

wijxj‖
2,

s.t.
∑

j

wij = 1, wij ≥ 0

(Roweis & Saul, 2000).

To encode the mutual relations among different sam-
ple classes, we also introduce the inter-manifold graph,
denoted as a triplet Gkikj = (V ki , V kj , Ekikj ). The
inter-manifold graph Gkikj is a bipartite graph with
one vertex set from the kth

i class and the other from
the kth

j . The construction of Gkikj will be discussed in
the following subsections.

3.2. Regularization along Data Manifold

Now we are given the sample data of multiple classes,
denoted as X , including both labeled and unlabeled
samples X l and Xu. The manifold structures within
each class data are encoded by the intra-class graph.
(Belkin et al., 2004) introduced a manifold regulariza-
tion item for the semisupervised regression framework,
i.e., the graph Laplacian, which is expected to impose
smoothness conditions along the manifold on the pos-
sible solutions. The final formulation seeks a balance
between the fitting item and the smoothness regular-
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ization, i.e.,

f̃ = arg min
1

l

∑

i

(fi − yi)
2 + γf tLpf, (2)

where p ∈ N . When p = 1, the regularization item is
the graph Laplacian and for p = 2, the regularization
turns out to be the 2-norm of the reconstruction error
when the weights wij are normalized, i.e.,

fT LT Lf =
∑

i

‖fi −
∑

j

wijfj‖
2

w.r.t.
∑

j

wij = 1, wij ≥ 0.

3.3. Cross Manifold Label Propagation

In our configuration, there does not exist a clear corre-
spondence among the manifolds of different classes or
modalities, and even the representations for different
modalities can be distinct. Thus it is rather difficult
to construct sample relations directly from the similar-
ity in the sample space X . Alternatively, the function
labels still convey some correspondence information,
which may be utilized to guide the inter-manifold re-
lations. Moreover, the manifold structure also contains
some indications about the correspondence. Thus we
first seek a point-to-point correspondence for the la-
beled data combining the indications provided by both
the sample labels and the manifold structures. This is
done under two assumptions:

1. Samples with similar labels lie generally in similar
relative positions on the corresponding manifold.

2. Corresponding sample sets tend to share similar
graph structures on the respective manifold.

3.3.1. Reinforced Landmark Correspondence

First we search for a set of stable landmarks to guide
the manifold alignment. Specifically, we use the ǫ-
ball distance criterion on the sample labels to initialize
the inter-manifold graphs. To give a robust correspon-
dence, we reinforce the inter-manifold connections by
iteratively implementing

W kikj ⇐ W ki × W kikj × W kj . (3)

Similar to the similarity propagation process on the
directed graph (Blondel et al., 2004), (3) reinforces
the similarity score of sample pairs by the similarity
of its neighbor pairs, i.e.,

w
kikj

ij ⇐
∑

m,n

wki

imwkikj
mn w

kj

nj . (4)
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Figure 2. Demonstration of reinforced landmark corre-
spondence. The similarity score of a1 and b2 is reinforced
by the scores of neighbor pairs.

The assumption here is that two nodes tend to be sim-
ilar if they have similar neighbors. (4) utilizes the
intra-manifold structure information to reinforce the
inter-manifold similarity and thus can generate a more
robust correspondence. The accuracy of the landmark
correspondence is critical for our algorithm. To en-
sure a robust performance, only the correspondences
with the top 20% largest similarity scores are selected
as the landmarks and it is common that some classes
may miss certain sample labels, so plenty of labeled
samples remain unmatched.

3.3.2. Manifold Alignment

To propagate the sample labels to the unlabeled points
across manifolds, we ’stretch’ all the manifolds with re-
spect to the landmark points obtained from the previ-
ous step and this can be realized by the semisupervised
manifold alignment (Ham et al., 2005).

In the manifold alignment process, we seek an embed-
ding that minimizes the correspondence error on the
landmark points and at the same time keeps the intra-
manifold structures, i.e.,

fki |Mki=1 = arg min(
C(fki |Mki=1)

∑

ki
fkiT Dkifki

), (5)

and

C(fki |Mki=1) =
∑

kikj

w
kikj

ij ‖fki

x
ki
i

− f
kj

x
kj

j

‖2

+γ
M
∑

ki=1

(fkiT Lp
ki

fki) + βfT Laf, (6)

where Dki is the diagonal degree matrix, Lki
is the

graph Laplacian matrix for the kth
i class and p ∈ N.

To ensure the inter-class adjacency, we add a global
compactness regularization item βfT Laf to the cost
function C, where La is the Laplacian Matrix of W a

with

wa
ij =

{

1 if xi and xj are of different classes

0 o.w.

The labels are propagated across manifolds on the de-
rived aligned manifolds using the nearest neighbor ap-
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Algorithm 1 Procedure to construct inter-manifold
connections

1: Inter-manifold graph initialization

w
kikj

ij =

{

1 if ‖yki

i − y
kj

j ‖2 < ǫ

0 o.w.

2: Correspondence Reinforcement
for Iter = 1 : NIter

W kikj = W ki × W kikj × W kj

end
3: Landmark Selection: Select the sample pairs with

the top 20% largest similarity scores as correspon-
dence. Set the corresponding elements in W kikj as
1 and others 0.

4: Manifold Alignment using the Inter-manifold
Graphs W kikj .

5: Find the corresponding points from different
classes for the unmatched labeled samples using
the nearest neighbor approach in the aligned space
and update the inter-manifold graphs W kikj .

proach, i.e., we connect the labeled samples with the
nearest points from other classes on the aligned space.
The derived inter-manifold graphs are concatenated to
form

W r =









O W 12 ... W 1M

W 21
O ... W 2M

... ... ... ...
WM1 WM2 ... O









, (7)

which is then symmetrized and employed in the fol-
lowing Inter-Manifold regularization item.

3.4. Inter-Manifold Regularization

We rearrange the samples to place the data from the
same class together and put the labeled points first for
each class, that is,

X = {x1
1, x

1
2, ..., x

1
l1 , x

1
l1+1, ..., x

1
l1+u1 , x2

1, x
2
2, ..., x

2
l2 , x

2
l2+1,

..., x2
l2+u2 , ..., xM

1 , xM
2 , ..., xM

lM , xM
lM+1, ..., x

M
lM+uM }.

Denote the corresponding function values as f , which
is a concatenation of fk = [fk

xk
1
, ..., fk

xk

lk+uk

]T from all

the classes. Our regression objective is defined as:

f̃ = arg min
f

∑

k

1

lk

∑

xk
i
∈X l

‖fk
xk

i

− yk
i ‖

2

+β
∑

k

1

(Nk)2
(fk)T Lp

kfk +
λ

N2
fT Lrf, (8)

where Lr is the Laplacian matrix of the symmetrized
W r.

The minimization of the objective is achieved when

f̃ = R−1
∑

k

1

lk
(Sk

lkSk)T Y k
l (9)

where

Sk
lk =

(

Ilk×lk Olk×uk

)

,

Sk =

(

O
Nk×

k−1
P

ki=1

Nki

INk×Nk O
Nk×

M
P

ki=k+1

Nki

)

are label and class selection matrices respectively and

R =
∑

k

1

lk
(Sk

lkSk)T (Sk
lkSk)

+ β
∑

k

1

(Nk)2
SkT Lp

kSk +
λ

N2
Lr.

4. Regression on Reproducing Kernel
Hilbert Space (RKHS)

A series of algorithms such as SVM, Ridge regression
and LapRLS (Belkin et al., 2005) employ different reg-
ularization items and empirical cost measures to the
objective and solve the optimization problem in an ap-
propriately chosen Reproducing Kernel Hilbert Space
(RKHS). One merit for the regression on RKHS is the
ability to predict out-of-sample labels.

Let K denote a Mercer kernel: X × X → R and HK

denote the induced RKHS of functions X → R with
norm ‖ ‖K . The regression with inter-manifold regu-
larization on the RKHS is defined as

f̃ = arg min
f∈HK

∑

k

1

lk

∑

xk
i
∈X l

‖fk
xk

i

− yk
i ‖

2 + γ‖f‖2
K

+β
∑

k

1

(Nk)2
(fk)T Lp

kfk +
λ

N2
fT Lrf. (10)

Similar to the Tikhonov regularization, we add an
RKHS norm penalization item to the TRIM algorithm
as a smoothness condition.
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(a)

MAE:586.46

(b)

MAE:231.87

(c)

MAE:393.78

(d)

Figure 3. Regression on the nonlinear Two Moons Dataset. (a) Original Function Value Distribution. (b) Traditional
Graph Laplacian Regularized Regression (separate regressors for different classes). (c) Two Class TRIM. (d) Two Class
TRIM on RKHS. Note the difference in the area indicated by the rectangle.

For the multi-class data under the same modality, we
have the following theorem:

Theorem-1. The solution to the minimization prob-
lem (10) admits an expansion

f̃(x) =

N=
P

k
(lk+uk)

∑

i=1

αiK(xi, x) (11)

Theorem-1 is a special version of the Generalized

Representer Theorem (Schlkopf et al., 2001)
and the proof is omitted here. It says that the
minimizer of (10) can be expressed in terms of
the linear expansion of K(xi, x) on both labeled
and unlabeled data over all the sample classes.
Thus the minimization over Hilbert space boils
down to minimizing the coefficient vector α =
[α1

1, ..., α
1
l1 , ..., α

1
l1+u1 , ..., αM

1 , ..., αM
lM , ..., αM

lM+uM ]T

over R
N and the minimizer is given by:

α̃ = J−1
∑

k

1

lk
(Sk

lkSk)T Y k
l , (12)

where

J =
∑

k

1

lk
(Sk

lkSk)T (Sk
lkSk)K + γI

+ β
∑

k

1

(Nk)2
SkT Lp

kSkK +
λ

N2
LrK.

and K is the N × N Gram matrix of labeled and un-
labeled points over all the sample classes.

For the out-of-sample data, the estimated labels can
be obtained using:

ynew =

N=
P

k
(lk+uk)

∑

i=1

α̃iK(xi, xnew). (13)

Note here in this framework the class information for
the incoming sample is not required in the prediction
stage.

5. Experiments

We performed experiments on two synthetic datasets
and one real-world regression problem of human age
estimation. Comparisons are made with the tradi-
tional graph Laplacian regularized semisupervised re-
gression (Belkin & Niyogi, 2003). We also evaluate the
generalization performance of the multi-class regres-
sion on RKHS. In the experiments, the intra-manifold
graphs are constructed using 10 nearest neighbors and
the inter-manifold graphs are constructed by follow-
ing the procedure described in Section 3. For all the
configurations, the parameter β for the intra-manifold
graph is empirically set as 0.001 and the λ for the
inter-manifold regularization is set as 0.1. For the
kernelized algorithms, the coefficient for the RKHS
norm γ = 0.001 and the gaussian kernel K(x, y) =
exp{−‖x − y‖2/δ2

o} with parameters δo = 21/2.5δ is
applied, where δ is the standard deviation of the sam-
ple data. We use the Mean Absolute Error (MAE)
criterion to measure the regression accuracy and it is
defined as an average of the absolute errors between
the estimated labels and the ground truth labels.

5.1. Synthetic Data: Nonlinear Two Moons

The nonlinear two moons dataset is shown in Figure
3. The colors in the figure are associated with the
function values and the variation of those sample la-
bels along the manifold is not uniform. The labeled
samples are marked by ′+′ and their distributions are
quite different across classes. As we can see, the sam-
ple labels for the class lying on the upper part of the
figure are not enough to give an accurate guidance for
the regression on the nonlinear label distribution. The
traditional graph Laplacian regularized regression al-
gorithm does not make use of the information conveyed
by the inter-class similarity and the prediction result
is not satisfactory, while in our algorithm the sample
labels from different classes can be utilized to guide
the regression and thus estimation accuracy is much
higher.
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(a)

MAE:248.50

(b)

MAE:144.11

(c)

MAE:107.64

(d)

Figure 4. Regression on Cyclone Dataset: (a) Original Function Values. (b) Traditional Graph Laplacian Regularized
Regression (separate regressors for different classes). (c) Three Class TRIM. (d) Three Class TRIM on RKHS.

5.2. Synthetic Data: Three-class Cyclones

One merit of our algorithm is that the regression ac-
curacy may be boosted as the class number increases.
This is because the cross manifold information that
could be utilized grows rapidly as the class number in-
creases. The Cyclone dataset consists of three classes
of samples and the class distribution is demonstrated
in Figure 5. The label distributions among different
classes are quite similar, while the labeled samples
scatter differently from class to class. As we may ob-
serve from Figure 4, without the inter-class regulariza-
tion, the regression for certain class may fail due to the
lack of sufficient labeled samples while our algorithm
still gives a satisfying performance.

5.3. Human Age Estimation

In this experiment we consider as a regression problem
the age estimation from facial images. In real applica-
tions, we often cannot obtain enough age labels though
we may easily get plenty of facial images. Those unla-
beled data can be used to guide our regression in the
semisupervised framework. One challenge for this es-
timation is caused by the gender difference. Although
the male and female may share some similar configu-
rations in the age distribution, just as demonstrated in
Figure 1, mixing the two may complicate the regres-
sion problem. On the other hand, the gender informa-
tion is usually easy to obtain and it is thus desirable
to use both the age labels and gender information to
guide the regression.

The aging data set used in this experiment is the
Yamaha database, which contains 8000 Japanese fa-
cial images of 1600 persons with ages ranging from
0 to 93. Each person has 5 images and the Yamaha
database is divided into two parts with 4000 images
from 800 males and another 4000 images for 800 fe-
males. The ages distribute evenly from 0 to 69 with
3500 male images and 3500 female images, and the rest
are distributed in the age gap from 71 to 93. We ran-
domly sampled 1000 photos from the male and female

Figure 5. Class Distribution of the Cyclone Dataset

subset respectively and thus altogether 2000 images
are used in our experiments. Before the regression,
the input image data is preprocessed with Principal
Component Analysis and the first 20 dimensions are
used for data projection. To fully evaluate the regres-
sion performance for both close set samples and those
out-of-sample data, we design two experimental con-
figurations for this dataset.

Configuration 1: Close Set Evaluation. In this
configuration, we do not have the out-of-sample data
and the close set performance of TRIM is evaluated in
comparison with the traditional graph Laplacian reg-
ularized regression (Belkin et al., 2004). The close
set contains altogether 2000 samples with 1000 im-
ages from males and 1000 images from females re-
spectively. We vary the number of randomly selected
labeled samples and examine the performance of dif-
ferent regression algorithms. The comparison results
between TRIM and the traditional single class Lapla-
cian Regularized regression are shown in Figure 6.
We can observe that our algorithm generally gives a
higher regression accuracy and the performance im-
provement is remarkable especially when the number
of labeled samples is small. As the number of sample
labels increases, the difference between the two algo-
rithms becomes smaller. This may be caused by the
fact that as the labels are sparse, the label guidance
is far less enough and thus the class information and
inter-manifold relations will have a greater influence
on the regression accuracy while when the labels are
abundant enough to guide the regression, the class in-
formation as well as those inter-manifold connections
becomes less important.

Configuration 2: Open Set Evaluation. Now we
examine the out-of-sample prediction performance for
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Figure 6. TRIM vs traditional graph Laplacian regular-
ized regression for the close set evaluation on YAMAHA
database.

the kernelized TRIM compared with kernelized ver-
sion of the traditional graph Laplacian regularized re-
gression (Belkin et al., 2005). In this configuration,
the sample set is divided into two subsets: one for the
regression function training and the other for the eval-
uation of aging estimation performance on those out-
of-sample data. The training set contains randomly
selected 800 male and 800 female images and the re-
maining ones are used for out-of-sample evaluation. In
the testing phase we do not input any gender informa-
tion. As is demonstrated in Figure 7, our algorithm
achieves a lower MAE in both training and testing sets.
Another observation similar as in the case for close set
configuration is that the regression accuracy improve-
ment grows as the sample labels become sparser.

6. Conclusions

In this paper, we have presented a novel algorithm ded-
icated for the regression problem on multi-class data.
Manifolds constructed from different classes are reg-
ularized separately and to utilize the inter-manifold
relations, we developed an efficient cross manifold la-
bel propagation method and the labels from differ-
ent classes can thus be employed to pilot the regres-
sion. Moreover, the regression function is further ex-
tended by the kernel trick to predict the labels of the
out-of-sample data without class information. Both
synthesized experiments and real world applications
demonstrated the superiority of our proposed frame-
work over the state-of-the-art semisupervised regres-
sion algorithms. To the best of our knowledge, this is
the first work to discuss the semisupervised regression
problem on multi-class data.
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Figure 7. Open set evaluation for the kernelized regression
on the YAMAHA database. (a) Regression on the training
set. (b) Regression on out-of-sample data.
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